首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The effect of the neurotoxic nitric oxide derivative, the peroxynitrite anion (ONOO), on the activity of the mitochondrial respiratory chain complexes in cultured neurones and astrocytes was studied. A single exposure of the neurones to ONOO (initial concentrations of 0.01–2.0 m M ) caused, after a subsequent 24-h incubation, a dose-dependent decrease in succinate-cytochrome c reductase (60% at 0.5 m M ) and in cytochrome c oxidase (52% at 0.5 m M ) activities. NADH-ubiquinone-1 reductase was unaffected. In astrocytes, the activity of the mitochondrial complexes was not affected up to 2 m M ONOO. Citrate synthase was unaffected in both cell types under all conditions studied. However, lactate dehydrogenase activity released to the culture medium was increased by ONOO in a dose-dependent manner (40% at 0.5 m M ONOO) from the neurones but not from the astrocytes. Neuronal glutathione concentration decreased by 39% at 0.1 m M ONOO, but astrocytic glutathione was not affected up to 2 m M ONOO. In isolated brain mitochondria, only succinate-cytochrome c reductase activity was affected (22% decrease at 1 m M ONOO). We conclude that the acute exposure of ONOO selectively damages neurones, whereas astrocytes remain unaffected. Intracellular glutathione appears to be an important factor for ameliorating ONOO-mediated mitochondrial damage. This study supports the hypothesis that the neurotoxicity of nitric oxide is mediated through mitochondrial dysfunction.  相似文献   

2.
Abstract: Excessive nitric oxide/peroxynitrite generation has been implicated in the pathogenesis of multiple sclerosis, and the demonstration of increased astrocytic nitric oxide synthase activity in the postmortem brain of multiple sclerosis patients supports this hypothesis. Exposure of astrocytes, in primary culture, to interferon-γ results in stimulation of nitric oxide synthase activity and increased nitric oxide release. In contrast to interferon-γ, interferon-α/β had a minimal effect on astrocytic nitric oxide formation. Furthermore, pretreatment of astrocytes with interferon-α/β inhibited (∼65%) stimulation by interferon-γ of nitric oxide synthase activity and nitric oxide release. Treatment with interferon-α/β at a concentration as low as 10 U/ml caused inhibition of mitochondrial cytochrome c oxidase. Furthermore, the damage to cytochrome c oxidase was prevented by the putative interferon-α/β receptor antagonist oxyphenylbutazone. In view of these observations, our current hypothesis is that the mitochondrial damage caused by exposure to interferon-α/β may impair the ability of astrocytes to induce nitric oxide synthase activity on subsequent interferon-γ exposure. These results may have implications for our understanding of the mechanisms responsible for the therapeutic effects of interferon-α/β preparations in multiple sclerosis.  相似文献   

3.
Abstract: Excessive nitric oxide/peroxynitrite generation has been implicated in the pathogenesis of multiple sclerosis, and the demonstration of increased astrocytic nitric oxide synthase activity in the postmortem brain of multiple sclerosis patients supports this hypothesis. Interferon-β is used for the treatment of multiple sclerosis, but currently little is known regarding its mode of action. Exposure of astrocytes in culture to interferon-γ plus lipopolysaccharide results in stimulation of nitric oxide release. Using a coculture system, we have been able to use astrocytes as a source of nitric oxide/peroxynitrite in an attempt to "model" the effects of raised cytokine levels observed in multiple sclerosis and to monitor the effect on neurones. Our results indicate that stimulation of astrocytic nitric oxide synthase activity causes significant damage to the mitochondrial activities of complexes II/III and IV of neighbouring neurones. This damage was prevented by a nitric oxide synthase inhibitor, suggesting that the damage was nitric oxide-mediated. Furthermore, interferon-α/β also prevented this damage. In view of these results, we suggest that a possible mechanism of action of interferon-β in the treatment of multiple sclerosis is that it prevents astrocytic nitric oxide production, thereby limiting damage to neighbouring cells, such as neurones.  相似文献   

4.
In this study we have investigated the mechanisms leading to mitochondrial damage in cultured neurons following sustained exposure to nitric oxide. Thus, the effects upon neuronal mitochondrial respiratory chain complex activity and reduced glutathione concentration following exposure to either the nitric oxide donor, S-nitroso-N-acetylpenicillamine, or to nitric oxide releasing astrocytes were assessed. Incubation with S-nitroso-N-acetylpenicillamine (1 mM) for 24 h decreased neuronal glutathione concentration by 57%, and this effect was accompanied by a marked decrease of complex I (43%), complex II–III (63%), and complex IV (41%) activities. Incubation of neurons with the glutathione synthesis inhibitor, l-buthionine-[S,r]-sulfoximine caused a major depletion of neuronal glutathione (93%), an effect that was accompanied by a marked loss of complex II–III (60%) and complex IV (41%) activities, although complex I activity was only mildly decreased (34%). In an attempt to approach a more physiological situation, we studied the effects upon glutathione status and mitochondrial respiratory chain activity of neurons incubated in coculture with nitric oxide releasing astrocytes. Astrocytes were activated by incubation with lipopolysaccharide/interferon-γ for 18 h, thereby inducing nitric oxide synthase and, hence, a continuous release of nitric oxide. Coincubation for 24 h of activated astrocytes with neurons caused a limited loss of complex IV activity and had no effect on the activities of complexes I or II–III. However, neurons exposed to astrocytes had a 1.7-fold fold increase in glutathione concentration compared to neurons cultured alone. Under these coculture conditions, the neuronal ATP concentration was modestly reduced (14%). This loss of ATP was prevented by the nitric oxide synthase inhibitor, NG-monomethyl-L-arginine. These results suggest that the neuronal mitochondrial respiratory chain is damaged by sustained exposure to nitric oxide and that reduced glutathione may be an important defence against such damage.  相似文献   

5.
Abstract: Activation of monocyte-derived macrophages with cytokines leads to the induction of nitric oxide synthase. Much less is known about the effects of cytokines on microglia, resident brain macrophages, or on astrocytes. In this study, we compared the induction by lipopolysaccharide, interferon-γ, and tumor necrosis factor-α of nitric oxide production and synthesis of tetrahydrobiopterin, the required cofactor for nitric oxide synthase, in microglia and peritoneal macrophages. Activation of microglia induced parallel increases in nitric oxide and intracellular tetrahydrobiopterin levels, although induction of the latter appears to be somewhat more sensitive to diverse stimulators. As with macrophages, inducible nitric oxide production in microglia was blocked by inhibitors of tetrahydrobiopterin biosynthesis. Interleukin-2, an important component of the neuroimmunomodulatory system, was only a weak activator of microglia by itself but potently synergized with interferon-γ to stimulate production of both nitric oxide and tetrahydrobiopterin. Astrocytes were also activated by lipopolysaccharide and combinations of cytokines but showed a somewhat different pattern of responses than microglia. Biopterin synthesis was increased to higher levels in astrocytes than in microglia, but maximal induction of nitric oxide production required higher concentrations of cytokines than microglia and the response was much lower. These results suggest that tetrahydrobiopterin synthesis in glial cells is a potential target for therapeutic intervention in acute CNS infections whose pathology may be mediated by overproduction of nitric oxide.  相似文献   

6.
The in vitro effects of PR toxin, a toxic secondary metabolite produced by certain strains of Penicillium roqueforti, on the membrane structure and function of rat liver mitochondria were investigated. It was found that the respiratory control and oxidative phosphorylation of the isolated mitochondria decreased concomitantly when the toxin was added to the assay system. The respiratory control ratio decreased about 60% and the ADP/O ratio decreased about 40% upon addition of 3.1 X 10(-5) M PR toxin to the highly coupled mitochondria. These findings suggest that PR toxin impairs the structural integrity of mitochondrial membranes. On the other hand, the toxin inhibited mitochondrial respiratory functions. It exhibited noncompetitive inhibitions to succinate oxidase, succinate-cytochrome c reductase, and succinate dehydrogenase activities of the mitochondrial respiratory chain. The inhibitory constants of PR toxin to these three enzyme systems were estimated to be 5.1 X 10(-6), 2.4 X 10(-5), and 5.2 X 10(-5) M, respectively. Moreover, PR toxin was found to change the spectral features of succinate-reduced cytochrome b and cytochrome c1 in succinate-cytochrome c reductase and inhibited the electron transfer between the two cytochromes. These observations indicate that the electron transfer function of succinate-cytochrome c reductase was perturbed by the toxin. However, PR toxin did not show significant inhibition of either cytochrome oxidase or NADH dehydrogenase activity of the mitochondria. It is thus concluded that PR toxin exerts its effect on the mitochondrial respiration and oxidative phosphorylation through action on the membrane and the succinate-cytochrome c reductase complex of the mitochondria.  相似文献   

7.
8.
Antimycin, a specific and highly potent inhibitor of electron transfer in the cytochrome b-c1 segment of the mitochondrial respiratory chain, does not inhibit reduction of cytochrome c1 by succinate in isolated succinate-cytochrome c reductase complex under conditions where the respiratory chain complex undergoes one oxidation-reduction turnover. If a slight molar excess of cytochrome c is added to the isolated reductase complex in the presence of antimycin, there is rapid reduction of one equivalent of c type cytochrome by succinate, after which reduction of the remaining c type cytochrome is inhibited. Antimycin fully inhibits succinate-cytochrome c reductase activity of isolated succinate-cytochrome c reductase complex in which the b-c1 complex undergoes multiple turnovers in a catalytic fashion. In addition, when antimycin is added to isolated reductase complex in the presence of cytochrome c plus cytochrome c oxidase, the inhibitor causes a "crossover" in the steady state level of reduction of the cytochromes b and c1 comparable to this classical effect in mitochondria. On the basis of these results, it is suggested that linear schemes of electron transfer are not adequate to account for the site of antimycin inhibition and the mechanism of electron transfer in the cytochrome b-c1 segment of the respiratory chain. The effects of antimycin are consistent with cyclic electron transfer mechanisms such as the protonmotive Q cycle.  相似文献   

9.
The possible role of nitric oxide (*NO) in brain mitochondrial maturation was studied. Within the first 5 min after birth, a sharp increase in ATP concentrations was observed, coinciding with an increase in mitochondrial complex II-III (succinate-cytochrome c reductase) activity, while complex I (NADH-CoQ1 reductase) and complex IV (cytochrome c oxidase) activities remained unchanged. Under the same circumstances, cGMP concentrations were increased by 5 min after birth, correlating significantly with ATP concentrations. Since ATP concentrations also correlated significantly with mitochondrial complex II-III activity, these three parameters may be associated. Inhibition of *NO synthase activity brought about by the administration of N(omega)-nitro-L-arginine monomethyl ester to mothers prevented the postnatal increase in cGMP and ATP levels and complex II-III activity. These results suggest that early postnatal mitochondrial maturation in the brain is a *NO-mediated process.  相似文献   

10.
Plasmid-mediated virulence genes in non-typhoid Salmonella serovars   总被引:6,自引:0,他引:6  
Abstract Among aerobic prokaryotes, many different terminal oxidase complexes have been described. Sequence comparison has revealed that the aa 3-type cytochrome c oxidase and the bo 3-type quinol oxidase are variations on the same theme: the heme-copper oxidase. A third member of this family has recently been recognized: the cbb 3-type cytochrome c oxidase. Here we give an overview, and report that nitric oxide (NO) reductase, a bc -type cytochrome involved in denitrification, shares important features with these terminal oxidases as well. Tentative structural, functional and evolutionary implications are discussed.  相似文献   

11.
Abstract: Treatment of rat cerebellar astrocyte-enriched primary cultures with dexamethasone enhances the nitric oxide-dependent cyclic GMP formation induced by noradrenaline in a time-(>6 h) and concentration-dependent manner (half-maximal effect at 1 n M ). Stimulation of cyclic GMP formation by the calcium ionophore A23187 is similarly enhanced. In contrast, cyclic GMP accumulation in cells treated with lipopolysaccharide is inhibited by dexamethasone. The potentiating effect of dexamethasone is prevented by the protein synthesis inhibitor cycloheximide and is not due to increased soluble guanylate cyclase activity. Agonist stimulation of [3H]arginine to [3H]citrulline conversion is enhanced by dexamethasone in astrocytes but not in cerebellar granule cells. These results indicate that glucocorticoids may up-regulate astroglial calcium-dependent nitric oxide synthase while preventing expression of inducible nitric oxide synthase and are the first report of a differential long-term regulation of the expression of neuronal and astroglial constitutive nitric oxide synthase activities.  相似文献   

12.
In order to investigate the relationship between nitric oxide-mediated regulation of mitochondrial function and excitotoxicity, the role of mitochondrial ATP synthesis and intracellular redox status on the mode of neuronal cell death was studied. Brief (5 min) glutamate (100 microM) receptor stimulation in primary cortical neurons collapsed the mitochondrial membrane potential (psi(m)) and transiently (30 min) inhibited mitochondrial ATP synthesis, causing early (1 h) necrosis or delayed (24 h) apoptosis. The transient inhibition of ATP synthesis was paralleled to a loss of NADH, which was fully recovered shortly after the insult. In contrast, NADPH and the GSH/GSSG ratio were maintained, but progressively decreased thereafter. Twenty-four hours after glutamate treatment, ATP was depleted, a phenomenon associated with a persistent inhibition of mitochondrial succinate-cytochrome c reductase activity and delayed necrosis. Blockade of either nitric oxide synthase (NOS) activity or the mitochondrial permeability transition (MPT) pore prevented psi(m) collapse, the transient inhibition of mitochondrial ATP synthesis, early necrosis and delayed apoptosis. However, blockade of NOS activity, but not the MPT pore, prevented the inhibition of succinate-cytochrome c reductase activity and delayed ATP depletion and necrosis. From these results, we suggest that glutamate receptor-mediated NOS activation would trigger MPT pore opening and transient inhibition of ATP synthesis leading to apoptosis in a neuronal subpopulation, whereas other groups of neurons would undergo oxidative stress and persistent inhibition of ATP synthesis leading to necrosis.  相似文献   

13.
Characterization and function of mitochondrial nitric-oxide synthase   总被引:9,自引:0,他引:9  
The mitochondrial production of nitric oxide is catalyzed by a nitric-oxide synthase. This enzyme has the same cofactor and substrate requirements as other constitutive nitric-oxide synthases. Its occurrence was demonstrated in various mitochondrial preparations (intact, purified mitochondria, permeabilized mitochondria, mitoplasts, submitochondrial particles) from different organs (liver, heart) and species (rat, pig). Endogenous nitric oxide reversibly inhibits oxygen consumption and ATP synthesis by competitive inhibition of cytochrome oxidase. The increased K(m) of cytochrome oxidase for oxygen and the steady-state reduction of the electron chain carriers provided experimental evidence for the direct interaction of this oxidase with endogenous nitric oxide. The increase in hydrogen peroxide production by nitric oxide-producing mitochondria not accompanied by the full reduction of the respiratory chain components indicated that cytochrome c oxidase utilizes nitric oxide as an alternative substrate. Finally, effectors or modulators of cytochrome oxidase (the irreversible step in oxidative phosphorylation) had been proposed during the last 40 years. Nitric oxide is the first molecule that fulfills this role (it is a competitive inhibitor, produced at a fair rate near the target site) extending the oxygen gradient to tissues.  相似文献   

14.
The effect of the herbicide paraquat (N,N'-dimethyl 4,4'-bipyridium), known to damage the lipid cellular membrane by peroxidation with superoxide radicals and a singlet oxygen, was investigated on skeletal muscle mitochondria. Minced rat gastrocnemius muscles were incubated in 8 mM paraquat solution. Mitochondrial fractions prepared from the incubated muscles were examined with respect to respiratory function and the enzyme activity of cytochrome c oxidase and succinate-cytochrome c reductase in the electron transport chain. The ADP/O ratio, RCR, and state 3 rates (= oxygen consumption in state 3) decreased gradually. State 4 rates (= oxygen consumption in state 4) increased in the initial stages and decreased after longer incubations. Enzyme activities gradually increased. These results suggested that paraquat damaged the mitochondrial membrane and disrupted oxidative phosphorylation in the early stage of incubation. Also, the electron transport chain was accelerated in the earlier stage and broken following a longer incubation. The inhibitory modality of paraquat on mitochondrial respiration was shown to be different from that of other known inhibitors.  相似文献   

15.
Microglial activation, oxidative stress, and dysfunctions in mitochondria, including the reduction of cytochrome oxidase activity, have been implicated in neurodegeneration. The current experiments tested the effects of reducing cytochrome oxidase activity on the ability of microglia to respond to inflammatory insults. Inhibition of cytochrome oxidase by azide reduced oxygen consumption and increased reactive oxygen species (ROS) production but did not affect cell viability. Azide also attenuated microglial activation, as measured by nitric oxide (NO.) production in response to lipopolysaccharide (LPS). It is surprising that the inhibition of cytochrome oxidase also diminished the activity of the alpha-ketoglutarate dehydrogenase complex (KGDHC), a Krebs cycle enzyme. This reduction was exaggerated when the azide-treated microglia were also treated with LPS. The combination of the azide-stimulated ROS and LPS-induced NO. would likely cause peroxynitrite formation in microglia. Thus, the possibility that KGDHC was inactivated by peroxynitrite was tested. Peroxynitrite inhibited the activity of isolated KGDHC, nitrated tyrosine residues of all three KGDHC subunits, and reduced immunoreactivity to antibodies against two KGDHC components. Thus, our data suggest that inhibition of the mitochondrial respiratory chain diminishes aerobic energy metabolism, interferes with microglial inflammatory responses, and compromises mitochondrial function, including KGDHC activity, which is vulnerable to NO. and peroxynitrite that result from microglial activation. Thus, activation of metabolically compromised microglia can further diminish their oxidative capacity, creating a deleterious spiral that may contribute to neurodegeneration.  相似文献   

16.
We have studied the effects of dibromothymoquinone (DBMIB) in various redox activities of the succinate-cytochrome c span of the mitochondrial respiratory chain. At concentrations higher than 50 mol/mol of cytochrome c1 the inhibitor produces a bypass of electron transfer on the substrate side of the bc1 complex, because of its autooxidation capability. This induces an artifactual overestimation of the real inhibition titer of the redox activity of this enzyme, which has been found to be 3-6 mol/mol of cytochrome c1 by following the ubiquinol-cytochrome c reductase activity. This action is reversed by addition of excess of sulphydryl compounds like cysteine.  相似文献   

17.
Specific activities of succinate:coenzyme Q reductase, ubiquinone:cytochrome c reductase, cytochrome oxidase, succinate:cytochrome c reductase, succinate oxidase, and ubiquinol oxidase have been measured in rat liver mitochondria in the presence of Triton X-100. The last three activities are much more sensitive to Triton X-100 than the first ones; the data suggest that the electron transport chain components cannot react with each other in the presence of the detergent. At least in the case of succinate:cytochrome c reductase, reconstitution of the detergent-treated membranes with externally added phospholipids reverses the inhibition produced by Triton X-100. These results support the idea that the respiratory chain components diffuse at random in the plane of the inner mitochondrial membrane; the main effect of the detergent would be to impair lateral diffusion by decreasing the area of lipid bilayer. When detergent-treated mitochondrial suspensions are centrifuged in order to separate the solubilized from the particulate material, only the first three enzyme activities mentioned above are found in the supernatants. After centrifugation, a latent ubiquinol:cytochrome c oxidase activity becomes apparent, whereas the same centrifugation process produces inhibition of cytochrome c oxidase in the presence of certain Triton X-100 concentrations. These effects could be due either to a selective solubilization of regulatory or catalytic subunits or to a conformational change of the enzyme-detergent complex.  相似文献   

18.
Addition of bacterial lipopolysaccharides (LPS) and interferon-gamma (IFN-gamma) to rat astrocytes in primary culture promotes an early release of arachidonic acid (ARA) associated with an immediate inhibition of neuronal nitric oxide synthase (nNOS). Preventing the release of constitutive nitric oxide (NO) is indeed critical for activation of the nuclear factor kappa B, and for the expression of inducible nitric oxide synthase responsible for the formation of large amounts of NO. LPS/IFN-gamma also promotes an early release of superoxide, via activation of NADPH oxidase, but the generation of peroxynitrite (ONOO-) is prevented by the different timing of superoxide (minutes) and NO (hours) formation. Upstream inhibition of the ARA-dependent nNOS inhibitory signaling, however, caused the parallel release of superoxide and constitutive NO, thereby leading to formation of ONOO- levels triggering loss of ATP and mitochondrial membrane potential followed by the mitochondrial release of cytochrome c, activation of caspase 3 and morphological evidence of apoptosis. Nanomolar levels of exogenous ARA prevented all these events via inhibition of early ONOO- formation. Thus, the ARA-dependent nNOS inhibition observed in astrocytes exposed to pro-inflammatory stimuli, as LPS/IFN-gamma, is critical for both the expression of nuclear factor kappa B-dependent genes and for survival.  相似文献   

19.
We have found that dicyclohexylcarbodiimide (DCCD) inhibits both the succinate-cytochrome c and the ubiquinol-cytochrome c reductases in cytochrome c-depleted mitochondria. On the other hand the succinate-ubiquinone reductase is not decreased at the same levels of the inhibitor. The inhibition curve of DCCD results sigmoidal for succinate-cytochrome c reductase, whereas it is hyperbolic for the ubiquinol-1-cytochrome c reductase, with also a lower apparent KI. The inhibition appears dependent both on the time of preincubation and on the mitochondrial concentration. The apparent Km for ubiquinol-1 is increased and the maximal velocity of ubiquinol-cytochrome c reductase is decreased by DCCD. The effects do not appear to be caused by unspecific modification of the physicochemical state of the bc1 region of the respiratory chain. The results therefore suggest the presence of a DCCD-sensitive electron transfer step in the redox pathways from ubiquinol to cytochrome c.  相似文献   

20.
Nitric oxide biosynthesis in cardiac muscle leads to a decreased oxygen consumption and lower ATP synthesis. It is suggested that this effect of nitric oxide is mainly due to the inhibition of the mitochondrial respiratory chain enzyme, cytochrome c oxidase. However, this work demonstrates that nitric oxide is able to inhibit soluble mitochondrial creatine kinase (CK), mitochondrial CK bound in purified mitochondria, CK in situ in skinned fibres as well as the functional activity of mitochondrial CK in situ in skinned fibres. Since mitochondrial isoenzyme is functionally coupled to oxidative phosphorylation, its inhibition also leads to decreased sensitivity of mitochondrial respiration to ADP and thus decreases ATP synthesis and oxygen consumption under physiological ADP concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号