共查询到20条相似文献,搜索用时 0 毫秒
1.
Kannan S 《Cell biology international》2003,27(2):153-163
CD36 is a platelet surface receptor protein that plays a major role in platelet aggregation and accumulation that is mediated by parasitic attachment. The CD36 receptor is constitutively phosphorylated by E-kinase/PKA, resulting in increased affinity for collagen, but preventing spontaneous platelet aggregation. Dephosphorylation of CD36 by protein phosphatase 2A (PP2A) leads to increased affinity for thrombospondin at a different rate than that of collagen-mediated platelet aggregation. Depletion of the E-kinase/PKA substrate [ATP](0)by E-NTPase-mediated hydrolysis, in conjunction with inhibition of PP2A by okadaic acid, could prove to be a valuable tool in inhibiting CD36 activation, thus preventing platelet aggregation and thrombus formation. 相似文献
2.
3.
Jan F.C. Glatz Yeliz Angin Laura K.M. Steinbusch Robert W. Schwenk Joost J.F.P. Luiken 《Prostaglandins, leukotrienes, and essential fatty acids》2013,88(1):71-77
The fatty acid transporter and scavenger receptor CD36 is increasingly being implicated in the pathogenesis of insulin resistance and its progression towards type 2 diabetes and associated cardiovascular complications. The redistribution of CD36 from intracellular stores to the plasma membrane is one of the earliest changes occurring in the heart during diet induced obesity and insulin resistance. This elicits an increased rate of fatty acid uptake and enhanced incorporation into triacylglycerol stores and lipid intermediates to subsequently interfere with insulin-induced GLUT4 recruitment (i.e., insulin resistance). In the present paper we discuss the potential of CD36 to serve as a target to rectify abnormal myocardial fatty acid uptake rates in cardiac lipotoxic diseases. Two approaches are described: (i) immunochemical inhibition of CD36 present at the sarcolemma and (ii) interference with the subcellular recycling of CD36. Using in vitro model systems of high-fat diet induced insulin resistance, the results indicate the feasibility of using CD36 as a target for adaptation of cardiac metabolic substrate utilization. In conclusion, CD36 deserves further attention as a promising therapeutic target to redirect fatty acid fluxes in the body. 相似文献
4.
Toshiyuki Morii Norihiro Kato Hiroshi Hirose Hiroshi Kawabe Keiichi Hirao 《Biomarkers》2013,18(4):207-212
Macrophages uptake oxidized low-density lipoprotein (LDL) via a scavenger receptor such as CD36 from plasma, and then become foam cells. We examined the association of CD36 gene single nucleotide polymorphisms (SNPs) with certain metabolic characteristics in a young male Japanese population (n?=?494). The G allele in a SNP located at +30215 on the 3’-untranslated region (UTR) was significantly correlated with the plasma LDL-cholesterol concentrations (r?=?0.13, p?<0.01). The difference in LDL-cholesterol concentrations was 10?mg dl?1 between GG- and AA-genotype carriers (p?<0.05). The CD36 gene SNP is a novel maker of the variation in the LDL-cholesterol levels in young Japanese men. 相似文献
5.
Goudriaan JR Dahlmans VE Febbraio M Teusink B Romijn JA Havekes LM Voshol PJ 《Molecular and cellular biochemistry》2002,239(1-2):199-202
Increasing evidence has implicated the membrane protein CD36 (or fatty acid translocase, FAT) to be involved in high affinity fatty acid uptake. CD36 is expressed in tissues active in fatty acid metabolism, like adipose tissue and skeletal and cardiac muscle, but also in intestine. CD36 is localized in the intestine mainly in the jejunal villi, where it is confined to enterocyte apical membrane.The aim was to determine the role of CD36 in intestinal lipid absorption. Lipid absorption was determined by administering 3H-labeled triolein and 14C-labeled palmitic acid as an olive oil bolus by intragastric gavage and determine appearance of 3H and 14C label in plasma, after blocking lipolysis by i.v. injections of Triton WR 1339. Surprisingly, no differences in plasma appearance of 3H-label or 14C-label were observed in CD36–/– mice compared to wild type controls. These results suggest that CD36 does not play a role in intestinal lipid absorption after an acute lipid load. 相似文献
6.
7.
Excessive lipid accumulation in macrophages plays an important role in the development of atherosclerosis. Recently, several studies have implied that resistin, an adipocytokine which is mainly expressed in human peripheral blood monocytes, may take part in the pathogenesis of atherosclerosis. In this study, we investigated the effects of resistin on lipid accumulation as well as oxLDL on resistin expression in human macrophages. Treatment of macrophages with oxLDL significantly increased resistin mRNA expression, whereas native LDL had no such effect. Resistin pre-treated macrophages contained more and larger lipid droplets stained by Nile red. Resistin increased the expression of CD36 at both mRNA and protein levels, without affecting those of class A macrophage scavenger receptor (SR-A). These results suggest that resistin promotes lipid accumulation in human macrophages through its upregulating CD36 cell surface expression. Also, it is suggested that resistin may act as a modulator for macrophage-to-foam cell transformation. 相似文献
8.
脂质代谢是机体的重要代谢过程,其紊乱会导致众多疾病的发生。人类白细胞分化抗原36(cluster of differentiation 36,CD36)是一种在单核细胞、巨噬细胞、平滑肌细胞以及脂肪细胞高度表达的清道夫受体,是识别氧化低密度脂蛋白及长链脂肪酸的主要受体和转运蛋白,在脂质代谢过程中发挥着重要作用。本文综述了CD36基因及蛋白的结构和生理功能,阐述了清道夫受体CD36在脂质代谢过程中发挥的作用,并系统地总结了其级联AMPK、mTOR和MAPK信号通路参与脂质代谢过程的分子机制,为相关生物学研究提供了理论基础。 相似文献
9.
目的: 观察外源性精胺对糖尿病肾病(DN)肾纤维化的保护作用,并探讨其机制。方法: 24 只雄性 C57 小鼠随机分为正常组(Control)、糖尿病组(T1D)和精胺预处理组(T1D+Sp,每组 n=8)。一次性注射 STZ(60 mg/kg)复制 1 型糖尿病小鼠模型,精胺预处理组在 STZ 注射前两周每天腹腔注射精胺(Sp,5 mg/(kg·d)),随后隔天注射精胺,第 12 周处死小鼠,检测血清肌酐、尿素氮判断肾功能变化,HE、PAS 和 Masson 染色观察肾组织损伤和纤维化水平。Western blot 法检测小鼠肾组织中基质金属蛋白酶(MMP-2、MMP-9)、IV型胶原(Coll-IV)蛋白的表达。结果: 与 Control 相比,T1D 组血糖(5.67±0.22 vs 28.40±0.57 mmol/L)、肌酐(14.33±1.22 vs 30.67±4.73 μmol/L)、尿素氮(6.93±4.94 vs 22.00±1.04 mmol/L)明显升高(P<0.05),肾组织基底膜增厚,胶原含量明显增加,MMP-2、MMP-9 和 Coll-IV 蛋白表达均升高(分别为 0.57±0.07 vs 1.06±0.20、47.00±0.04 vs 1.29±0.09和0.42±0.16 vs 0.95±0.18,P<0.05),精胺预处理明显减轻上述变化。结论: 外源性精胺预处理通过调节 MMPs 与胶原的平衡减轻 DN 小鼠的肾纤维化。 相似文献
10.
Atrial natriuretic peptide, besides its role in the regulation of volume homeostasis, has been noted to exert cytoprotective effects in several cell types from hypoxia. The present study was performed to explore the effect of ANP on high glucose-activated transforming growth factor-beta1 (TGF-beta1), Smad and collagen synthesis in renal proximal epithelial cells. Cultured NRK-52E cells were divided into five groups: (1) normal glucose (5.5 mM), (2) high glucose (35 mM), (3) D-mannitol (29.5 mM), (4) high glucose plus ANP (10(-6)-10(-9) M), and (5) high glucose plus ANP (10(-6) M) and guanylate cyclase inhibitor LY83583 (10(-7) M) groups. Messenger RNA levels of TGF-beta1, Smad2, and collagens were measured by RT-PCR. ELISA, immunocytochemistry and Western blotting were used to detect protein levels of TGF-beta1, Smad2, phospho-Smad 2/3 and collagen type 1. We found high glucose to significantly increase mRNA levels of TGF-beta1, Smad 2, collagen types I and III and protein levels of TGF-beta1, phospho-Smad 2/3 and collagen type 1, but mannitol did not affect their expression. The addition of ANP significantly attenuated high glucose-enhanced mRNA and protein levels of TGF-beta1, Smad and collagens. LY83583 blocked the influence of ANP on high glucose-activated TGF-beta1, Smad and collagen synthesis. This is the first study to demonstrate that activation of TGF-beta1, Smad and collagen synthesis stimulated by high glucose can also be inhibited by exogenous ANP in renal tubular epithelial cells. 相似文献
11.
Sabbir Khan Anjaneyulu Kowluru 《Biochemical and biophysical research communications》2018,495(3):2221-2226
The cluster of differentiation 36 (CD36) is implicated in the intake of long-chain fatty acids and fat storage in various cell types including the pancreatic beta cell, thus contributing to the pathogenesis of metabolic stress and diabetes. Recent evidence indicates that CD36 undergoes post-translational modifications such as acetylation-deacetylation. However, putative roles of such modifications in its functional activation and onset of beta cell dysregulation under the duress of glucolipotoxicity (GLT) remain largely unknown. Using pharmacological approaches, we validated, herein, the hypothesis that acetylation-deacetylation signaling steps are involved in CD36-mediated lipid accumulation and downstream apoptotic signaling in pancreatic beta (INS-1832/13) cells under GLT. Exposure of these cells to GLT resulted in significant lipid accumulation without affecting the CD36 expression. Sulfo-n-succinimidyl oleate (SSO), an irreversible inhibitor of CD36, significantly attenuated lipid accumulation under GLT conditions, thus implicating CD36 in this metabolic step. Furthermore, trichostatin A (TSA) or valproic acid (VPA), known inhibitors of lysine deacetylases, markedly suppressed GLT-associated lipid accumulation with no discernible effects on CD36 expression. Lastly, SSO or TSA prevented caspase 3 activation in INS-1832/13?cells exposed to GLT conditions. Based on these findings, we conclude that an acetylation-deacetylation signaling step might regulate CD36 functional activity and subsequent lipid accumulation and caspase 3 activation in pancreatic beta cells exposed to GLT conditions. Identification of specific lysine deacetylases that control CD36 function should provide novel clues for the prevention of beta-cell dysfunction under GLT. 相似文献
12.
Hua Wang Nian‐Peng Song Jian‐Ping Li Zhi‐Hao Wang Yun Ti Yi‐Hui Li Wei Zhang Ming Zhong 《Journal of cellular and molecular medicine》2020,24(13):7331-7340
The mechanisms responsible for platelet activation, the prothrombotic state, in non‐valvular atrial fibrillation (NVAF) are still obscure. Microvesicles (MVs) can transfer various messages to target cells and may be helpful for exploring the detailed mechanisms. We aimed to investigate the possible mechanisms by which proatherogenic factors of NVAF contribute to platelet activation. Two hundred and ten patients with NVAF were stratified as being at ‘low to moderate risk’ or ‘high risk’ for stroke according to the CHADS2 score. Levels of platelet‐derived MVs (PMVs) and platelet activation were examined. CD36‐positive or CD36‐deficient human platelets were stimulated by MVs isolated from NVAF patients with or without various inhibitors in vitro. Levels of PMVs and platelet activation markers enhanced significantly in high‐risk patients. The MVs isolated from plasma of NVAF patients bound to platelet CD36 and activated platelets by phosphorylating the mitogen‐activated protein kinase 4/Jun N‐terminal kinase 2 (MKK4/JNK2) pathways. However, CD36 deficiency protected against MV‐induced activation of platelets. We reveal a possible mechanism of platelet activation in NVAF and suggest that the platelet CD36 might be an effective target in preventing the prothrombotic state in NVAF. 相似文献
13.
Contraction-induced skeletal muscle FAT/CD36 trafficking and FA uptake is AMPK independent 总被引:1,自引:0,他引:1
Jeppesen J Albers PH Rose AJ Birk JB Schjerling P Dzamko N Steinberg GR Kiens B 《Journal of lipid research》2011,52(4):699-711
The aim of this study was to investigate the molecular mechanisms regulating FA translocase CD36 (FAT/CD36) translocation and FA uptake in skeletal muscle during contractions. In one model, wild-type (WT) and AMP-dependent protein kinase kinase dead (AMPK KD) mice were exercised or extensor digitorum longus (EDL) and soleus (SOL) muscles were contracted, ex vivo. In separate studies, FAT/CD36 translocation and FA uptake in response to muscle contractions were investigated in the perfused rat hindlimb. Exercise induced a similar increase in skeletal muscle cell surface membrane FAT/CD36 content in WT (+34%) and AMPK KD (+37%) mice. In contrast, 5-aminoimidazole-4-carboxamide ribonucleoside only induced an increase in cell surface FAT/CD36 content in WT (+29%) mice. Furthermore, in the perfused rat hindlimb, muscle contraction induced a rapid (1 min, +15%) and sustained (10 min, +24%) FAT/CD36 relocation to cell surface membranes. The increase in cell surface FAT/CD36 protein content with muscle contractions was associated with increased FA uptake, both in EDL and SOL muscle from WT and AMPK KD mice and in the perfused rat hindlimb. This suggests that AMPK is not essential in regulation of FAT/CD36 translocation and FA uptake in skeletal muscle during contractions. However, AMPK could be important in regulation of FAT/CD36 distribution in other physiological situations. 相似文献
14.
Haotian Wei Li Chen Qing Li Xinjun Liang Kun Wang Ying Zhang Yueqiang Li Yanyan Liu Gang Xu 《International journal of biological sciences》2022,18(3):1171
Renal lymphangiogenesis is a new field of international nephrology in recent years and plays an important role in the progression of chronic renal disease. CD137 was originally described as a surface molecule present on activated T and NK cells and detected on hypoxic endothelial cells and inflamed blood vessels, but its function on lymphatic endothelial cells remains unclear. We investigated the relationships among CD137, lymphangiogenesis and macrophages, which are involved in interstitial fibrosis. Similar to other chronic inflammatory diseases, we found lymphangiogenesis and expression of CD137 in the renal tissue of patients with IgA nephropathy. CD137-positive lymphatic vessels were involved in the development process of IgA nephropathy and positively correlated with serum creatinine, serum urea nitrogen, serum uric acid, and urinary 24 h total protein. The expression of these indicators was negatively correlated with eGFR, plasma albumin, and HB. In mouse models of UUO, we verified that CD137 expression was significantly elevated during lymphangiogenesis and that its ligand CD137L was released by macrophages after VEGF-C stimulation in the kidney. In vitro, recombinant CD137L significantly enhanced LEC proliferation, migration and tube formation, and these effects were inhibited by CD137 siRNA. Mechanistically, the CD137L interaction with CD137 induced the transition from LC3-I to LC3-II and the expression of Atg5, Atg7, Atg12 and p62 proteins by activating the PI3K/AKT/mTOR pathway to promote autophagy. Knockdown of Atg5 and Atg7 blocked CD137L-induced autophagy. Thus, we propose that CD137L secretion by macrophages interacts with CD137 on lymphatic endothelial cells to prompt lymphangiogenesis in the kidney, which further drives fibrogenic responses. Our findings suggest that inhibition of the CD137-CD137L pathway is a novel therapeutic approach for obstructive nephropathy. 相似文献
15.
I.Z.A. Pawluczyk A. Pervez M. Ghaderi Najafabadi M.A. Saleem P.S. Topham 《Experimental cell research》2014
Evidence is emerging that podocytes are able to endocytose proteins such as albumin using kinetics consistent with a receptor-mediated process. To date the role of the fatty acid moiety on albumin uptake kinetics has not been delineated and the receptor responsible for uptake is yet to be identified. 相似文献
16.
17.
ObjectiveTo perform comparative analysis of the role of scavenger receptor CD36 on endothelial vs. sub-endothelial elastic modulus (stiffness) in the aortas of young and aged mice.Approaches and ResultsElastic moduli of endothelial and sub-endothelial layers of freshly isolated mouse aortas were quantified using atomic force microscopy. In young mice (4–6 months old), we found that while endothelial stiffness is markedly reduced in aortas of CD36−/−mice, as compared to WT controls, no difference between CD36−/− and WT aortas is observed in the stiffness of the sub-endothelial layer in denuded arteries. Additionally, inhibition of myosin phosphorylation also decreases the elastic modulus in the EC, but not the sub-EC layer in WT mice. Moreover, inhibiting CD36 mediated uptake of oxLDL in intact WT aortas abrogated oxLDL-induced endothelial stiffening. Further analysis of aged mice (22–25 months) revealed that aging resulted not only in significant stiffening of the denuded arteries, as was previously known, but also a comparable increase in the elastic modulus of the endothelial layer. Most significantly, this stiffening in the EC layer is dependent on CD36, whereas the denuded layer is not affected.ConclusionsOur results show that the role CD36 in stiffening of cellular components of intact aortas is endothelial-specific and that genetic deficiency of CD36 protects against endothelial stiffening in aged mice. Moreover, these data suggest that endothelial stiffness in intact mouse aortas depends more on the expression of CD36 than on the stiffness of the sub-endothelial layer. 相似文献
18.
Kuda O Jenkins CM Skinner JR Moon SH Su X Gross RW Abumrad NA 《The Journal of biological chemistry》2011,286(20):17785-17795
The scavenger receptor FAT/CD36 contributes to the inflammation associated with diabetes, atherosclerosis, thrombosis, and Alzheimer disease. Underlying mechanisms include CD36 promotion of oxidative stress and its signaling to stress kinases. Here we document an additional mechanism for the role of CD36 in inflammation. CD36 regulates membrane calcium influx in response to endoplasmic reticulum (ER) stress, release of arachidonic acid (AA) from cellular membranes by cytoplasmic phospholipase A(2)α (cPLA(2)α) and contributes to the generation of proinflammatory eicosanoids. CHO cells stably expressing human CD36 released severalfold more AA and prostaglandin E(2) (PGE(2)), a major product of AA metabolism by cyclooxygenases, in response to thapsigargin-induced ER stress as compared with control cells. Calcium influx after ER calcium release resulted in phosphorylation of cPLA(2) and its translocation to membranes in a CD36-dependent manner. Peritoneal macrophages from CD36(-/-) mice exhibited diminished calcium transients and reduced AA release after thapsigargin or UTP treatment with decreased ERK1/2 and cPLA(2) phosphorylation. However, PGE(2) production was unexpectedly enhanced in CD36(-/-) macrophages, which probably resulted from a large induction of cyclooxygenase 2 mRNA and protein. The data demonstrate participation of CD36 in membrane calcium influx in response to ER stress or purinergic receptor stimulation resulting in AA liberation for PGE(2) formation. Collectively, these results identify a mechanism contributing to the pleiotropic proinflammatory effects of CD36 and suggest that its targeted inhibition may reduce the acute inflammatory response. 相似文献
19.
Yun Zhang Doudou Dong Xiaoting Xu Hui He Yuan Zhu Tingwen Lei Hailong Ou 《The Journal of biological chemistry》2022,298(6)
Oxidized high-density lipoprotein (oxHDL) reduces the ability of cells to mediate reverse cholesterol transport and also shows atherogenic properties. Palmitoylation of cluster of differentiation 36 (CD36), an important receptor mediating lipoprotein uptake, is required for fatty acid endocytosis. However, the relationship between oxHDL and CD36 has not been described in mechanistic detail. Here, we demonstrate using acyl-biotin exchange analysis that oxHDL activates CD36 by increasing CD36 palmitoylation, which promotes efficient uptake in macrophages. This modification increased CD36 incorporation into plasma lipid rafts and activated downstream signaling mediators, such as Lyn, Fyn, and c-Jun N-terminal kinase, which elicited enhanced oxHDL uptake and foam cell formation. Furthermore, blocking CD36 palmitoylation with the pharmacological inhibitor 2-bromopalmitate decreased cell surface translocation and lowered oxHDL uptake in oxHDL-treated macrophages. We verified these results by transfecting oxHDL-induced macrophages with vectors expressing wildtype or mutant CD36 (mCD36) in which the cytoplasmic palmitoylated cysteine residues were replaced. We show that cells containing mCD36 exhibited less palmitoylated CD36, disrupted plasma membrane trafficking, and reduced protein stability. Moreover, in ApoE−/−CD36−/− mice, lipid accumulation at the aortic root in mice receiving the mCD36 vector was decreased, suggesting that CD36 palmitoylation is responsible for lipid uptake in vivo. Finally, our data indicated that palmitoylation of CD36 was dependent on DHHC6 (Asp-His-His-Cys) acyltransferase and its cofactor selenoprotein K, which increased the CD36/caveolin-1 interaction and membrane targeting in cells exposed to oxHDL. Altogether, our study uncovers a causal link between oxHDL and CD36 palmitoylation and provides insight into foam cell formation and atherogenesis. 相似文献