共查询到20条相似文献,搜索用时 0 毫秒
1.
Frequent germline mutations and somatic repeat instability in DNA mismatch-repair-deficient Caenorhabditis elegans 总被引:1,自引:0,他引:1
Mismatch-repair-deficient mutants were initially recognized as mutation-prone derivatives of bacteria, and later mismatch repair deficiency was found to predispose humans to colon cancers (HNPCC). We generated mismatch-repair-deficient Caenorhabditis elegans by deleting the msh-6 gene and analyzed the fidelity of transmission of genetic information to subsequent generations. msh-6-defective animals show an elevated level of spontaneous mutants in both the male and female germline; also repeated DNA tracts are unstable. To monitor DNA repeat instability in somatic tissue, we developed a sensitive system, making use of heat-shock promoter-driven lacZ transgenes, but with a repeat that puts this reporter gene out of frame. In genetic msh-6-deficient animals lacZ+ patches are observed as a result of somatic repeat instability. RNA interference by feeding wild-type animals dsRNA homologous to msh-2 or msh-6 also resulted in somatic DNA instability, as well as in germline mutagenesis, indicating that one can use C. elegans as a model system to discover genes involved in maintaining DNA stability by large-scale RNAi screens. 相似文献
2.
3.
4.
How a committed cell can be reverted to an undifferentiated state is a central question in stem cell biology. This process, called dedifferentiation, is likely to be important for replacing stem cells as they age or get damaged. Tremendous progress has been made in understanding this fundamental process, but its mechanisms are poorly understood. Here we demonstrate that the aberrant activation of Ras-ERK MAPK signaling promotes cellular dedifferentiation in the Caenorhabditis elegans germline. To activate signaling, we removed two negative regulators, the PUF-8 RNA-binding protein and LIP-1 dual specificity phosphatase. The removal of both of these two regulators caused secondary spermatocytes to dedifferentiate and begin mitotic divisions. Interestingly, reduction of Ras-ERK MAPK signaling, either by mutation or chemical inhibition, blocked the initiation of dedifferentiation. By RNAi screening, we identified RSKN-1/P90(RSK) as a downstream effector of MPK-1/ERK that is critical for dedifferentiation: rskn-1 RNAi suppressed spermatocyte dedifferentiation and instead induced meiotic divisions. These regulators are broadly conserved, suggesting that similar molecular circuitry may control cellular dedifferentiation in other organisms, including humans. 相似文献
5.
Gene conversion and end-joining-repair double-strand breaks in the Caenorhabditis elegans germline
下载免费PDF全文

Excision of a Mos1 transposon in the germline of Caenorhabditis elegans generates a double-strand break in the chromosome. We demonstrate that breaks are most prominently repaired by gene conversion from the homolog, but also rarely by nonhomologous end-joining. In some cases, gene conversion events are resolved by crossing over. Surprisingly, expression of the transposase using an intestine-specific promoter can induce repair, raising the possibility that activation of transposase expression in somatic cells can lead to transposition of Mos1 in the germline. 相似文献
6.
The Caenorhabditis elegans gonad provides a well-defined model for a stem cell niche and its control of self-renewal and differentiation. The distal tip cell (DTC) forms a mesenchymal niche that controls germline stem cells (GSCs), both to generate the germline tissue during development and to maintain it during adulthood. The DTC uses GLP-1/Notch signaling to regulate GSCs; germ cells respond to Notch signaling with a network of RNA regulators to control the decision between self-renewal and entry into the meiotic cell cycle. 相似文献
7.
8.
In the Caenorhabditis elegans germline, proliferation is induced by Notch-type signaling. Entry of germ cells into meiosis is triggered by activity of the GLD-1 and GLD-2 pathways, which function redundantly to promote meiosis and/or inhibit proliferation. Activation of the germline Notch-type receptor, GLP-1, ultimately inhibits the activities of the GLD-1 and GLD-2 pathways. We previously identified several ego (enhancer of glp-1) genes that promote germline proliferation and interact genetically with the GLP-1 signaling pathway. Here, we show that atx-2 is an ego gene. Our data suggest that ATX-2 is not a positive regulator of the GLP-1 signaling pathway and GLP-1 signaling is not the sole positive regulator of ATX-2 activity. Moreover, our data indicate that GLP-1 must have an additional function, which may be to repress activity of a third meiotic entry pathway that would work in parallel with the GLD-1 and GLD-2 pathways. In addition to its role in proliferation, ATX-2 acts downstream of FOG-2 to promote the female germline fate. 相似文献
9.
Nonsense mutant mRNAs are unstable in all eucaryotes tested, a phenomenon termed nonsense-mediated mRNA decay (NMD) or mRNA surveillance. Functions of the seven smg genes are required for mRNA surveillance in Caenorhabditis elegans. In Smg(+) genetic backgrounds, nonsense-mutant mRNAs are unstable, while in Smg(?) backgrounds such mRNAs are stable. Previous work has demonstrated that the elevated level of nonsense-mutant mRNAs in Smg(?) animals can influence the phenotypic effects of heterozygous nonsense mutations. Certain nonsense alleles of a muscle myosin heavy chain gene are recessive in Smg(+) backgrounds but strongly dominant in Smg(?) backgrounds. Such alleles probably express disruptive myosin polypeptide fragments whose abundance is elevated in smg mutants due to elevation of mRNA levels. We report here that mutations in a variety of C. elegans genes are strongly dominant in Smg(?), but recessive or only weakly dominant in Smg(+) backgrounds. We isolated 32 dominant visible mutations in a Smg(?) genetic background and tested whether their dominance requires a functional NMD system. The dominance of 21 of these mutations is influenced by NMD. We demonstrate, furthermore, that in the case of myosin, the dominant-negative effects of nonsense alleles are likely to be due to expression of N-terminal nonsense-fragment polypeptides, not to mistranslation of the nonsense codons. mRNA surveillance, therefore, may mitigate potentially deleterious effects of many heterozygous germline and somatic nonsense or frameshift mutations. We also provide evidence that smg-6, a gene previously identified as being required for NMD, performs essential function(s) in addition to its role in NMD. 相似文献
10.
Caenorhabditis elegans germline cells are maintained in an undifferentiated and mitotically dividing state by Notch signaling and the FBF (for fem-3 binding factor) RNA-binding protein. Here, we report that the LIP-1 phosphatase, a proposed homolog of mitogen-activated protein (MAP) kinase phosphatases, is required for the normal extent of germline proliferation, and that lip-1 controls germline proliferation by regulating MAP kinase activity. In wild-type germ lines, LIP-1 protein is present in the proximal third of the mitotic region, consistent with its effect on germline proliferation. We provide evidence that lip-1 expression in the germline mitotic region is controlled by a combination of GLP-1/Notch signaling and FBF repression. Unexpectedly, FBF controls the accumulation of lip-1 mRNA, and therefore is likely to control its stability or 3'-end formation. In a sensitized mutant background, LIP-1 can function as a pivotal regulator of the decision between proliferation and differentiation. The control of germline proliferation by LIP-1 has intriguing parallels with the control of stem cells and progenitor cells in vertebrates. 相似文献
11.
The essential neurotransmitter acetylcholine functions throughout the animal kingdom. In Caenorhabditis elegans, the acetylcholine biosynthetic enzyme [choline acetyltransferase (ChAT)] and vesicular transporter [vesicular acetylcholine transporter (VAChT)] are encoded by the cha-1 and unc-17 genes, respectively. These two genes compose a single complex locus in which the unc-17 gene is nested within the first intron of cha-1, and the two gene products arise from a common pre-messenger RNA (pre-mRNA) by alternative splicing. This genomic organization, known as the cholinergic gene locus (CGL), is conserved throughout the animal kingdom, suggesting that the structure is important for the regulation and function of these genes. However, very little is known about CGL regulation in any species. We now report the identification of an unusual type of splicing regulation in the CGL of C. elegans, mediated by two pairs of complementary sequence elements within the locus. We show that both pairs of elements are required for efficient splicing to the distal acceptor, and we also demonstrate that proper distal splicing depends more on sequence complementarity within each pair of elements than on the sequences themselves. We propose that these sequence elements are able to form stem-loop structures in the pre-mRNA; such structures would favor specific splicing alternatives and thus regulate CGL splicing. We have identified complementary elements at comparable locations in the genomes of representative species of other animal phyla; we suggest that this unusual regulatory mechanism may be a general feature of CGLs. 相似文献
12.
13.
Purified thick filaments from the nematode Caenorhabditis elegans: evidence for multiple proteins associated with core structures 总被引:3,自引:3,他引:3
下载免费PDF全文

The thick filaments of the nematode, Caenorhabditis elegans, arising predominantly from the body-wall muscles, contain two myosin isoforms and paramyosin as their major proteins. The two myosins are located in distinct regions of the surfaces, while paramyosin is located within the backbones of the filaments. Tubular structures constitute the cores of the polar regions, and electron-dense material is present in the cores of the central regions (Epstein, H.F., D.M. Miller, I. Ortiz, and G.C. Berliner. 1985. J. Cell Biol. 100:904-915). Biochemical, genetic, and immunological experiments indicate that the two myosins and paramyosin are not necessary core components (Epstein, H.F., I. Ortiz, and L.A. Traeger Mackinnon. 1986. J. Cell Biol. 103:985-993). The existence of the core structures suggests, therefore, that additional proteins may be associated with thick filaments in C. elegans. To biochemically detect minor associated proteins, a new procedure for the isolation of thick filaments of high purity and structural preservation has been developed. The final step, glycerol gradient centrifugation, yielded fractions that are contaminated by, at most, 1-2% with actin, tropomyosin, or ribosome-associated proteins on the basis of Coomassie Blue staining and electron microscopy. Silver staining and radioautography of gel electrophoretograms of unlabeled and 35S-labeled proteins, respectively, revealed at least 10 additional bands that cosedimented with thick filaments in glycerol gradients. Core structures prepared from wild-type thick filaments contained at least six of these thick filament-associated protein bands. The six proteins also cosedimented with thick filaments purified by gradient centrifugation from CB190 mutants lacking myosin heavy chain B and from CB1214 mutants lacking paramyosin. For these reasons, we propose that the six associated proteins are potential candidates for putative components of core structures in the thick filaments of body-wall muscles of C. elegans. 相似文献
14.
Variation in rates of molecular evolution has been attributed to numerous, interrelated causes, including metabolic rate, body size, and generation time. Speculation concerning the influence of metabolic rate on rates of evolution often invokes the putative mutagenic effects of oxidative stress. To isolate the effects of oxidative stress on the germline from the effects of metabolic rate, generation time, and other factors, we allowed mutations to accumulate under relaxed selection for 125 generations in two strains of the nematode Caenorhabditis elegans, the canonical wild-type strain (N2) and a mutant strain with elevated steady-state oxidative stress (mev-1). Contrary to our expectation, the mutational decline in fitness did not differ between N2 and mev-1. This result suggests that the mutagenic effects of oxidative stress in C. elegans are minor relative to the effects of other types of mutations, such as errors during DNA replication. However, mev-1 MA lines did go extinct more frequently than wild-type lines; some possible explanations for the difference in extinction rate are discussed. 相似文献
15.
16.
Kawasaki I Amiri A Fan Y Meyer N Dunkelbarger S Motohashi T Karashima T Bossinger O Strome S 《Genetics》2004,167(2):645-661
PGL-1 is a constitutive protein component of C. elegans germ granules, also known as P granules. Maternally supplied PGL-1 is essential for germline development but only at elevated temperature, raising the possibility that redundant factors provide sufficient function at lower temperatures. We have identified two PGL-1-related proteins, PGL-2 and PGL-3, by sequence analysis of the C. elegans genome and by a yeast two-hybrid screen for proteins that interact with PGL-1. PGL-3 is associated with P granules at all stages of development, while PGL-2 is associated with P granules only during postembryonic development. All three PGL proteins interact with each other in vitro. Furthermore, PGL-1 and PGL-3 are co-immunoprecipitated from embryo extracts, indicating that they are indeed in the same protein complex in vivo. Nevertheless, each PGL protein localizes to P granules independently of the other two. pgl-2 or pgl-3 single-mutant worms do not show obvious defects in germline development. However, pgl-1; pgl-3 (but not pgl-2; pgl-1) double-mutant hermaphrodites and males show significantly enhanced sterility at all temperatures, compared to pgl-1 alone. Mutant hermaphrodites show defects in germline proliferation and in production of healthy gametes and viable embryos. Our findings demonstrate that both PGL-2 and PGL-3 are components of P granules, both interact with PGL-1, and at least PGL-3 functions redundantly with PGL-1 to ensure fertility in both sexes of C. elegans. 相似文献
17.
DNA was introduced into the germ line of the nematode Caenorhabditis elegans by microinjection. Approximately 10% of the injected worms gave rise to transformed progeny. Upon injection, supercoiled molecules formed a high-molecular-weight array predominantly composed of tandem repeats of the injected sequence. Injected linear molecules formed both tandem and inverted repeats as if they had ligated to each other. No worm DNA sequences were required in the injected plasmid for the formation of these high-molecular-weight arrays. Surprisingly, these high-molecular-weight arrays were extrachromosomal and heritable. On average 50% of the progeny of a transformed hermaphrodite still carried the exogenous sequences. In situ hybridization experiments demonstrated that approximately half of the transformed animals carried foreign DNA in all of their cells; the remainder were mosaic animals in which some cells contained the exogenous sequences while others carried no detectable foreign DNA. The presence of mosaic and nonmosaic nematodes in transformed populations may permit detailed analysis of the expression and function of C. elegans genes. 相似文献
18.
19.
《Mutation Research/DNA Repair Reports》1986,165(2):101-107
DNA glycosylases acting upon uracil- or 3-methyl-adenine-containing DNA have been detected in the sonic extracts of the nematode, Caenorhabditis elegans. 4 types of the asynchronously-growing worms, embryos obtained from gravid hermaphrodites, aseptically-hatched larvae, or dauer larvae. Uracil-DNA glcosylase activity was found in all 4 types of the extracts, and the activity was highest in the embryonic extract. In contrast, 3-methyladenine-DNA glycosylase activity was undetectable in the embryonic extract, while an equal level of activity was found in the other 3 types of the extracts. The results substantiate the ubiquity of base-excision repair in various organisms, and suggest that some of the repair functions may be developmentally regulated in multicellular animals. 相似文献