首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A thorough re-investigation was undertaken of a variety of factors that might explain the increased uptake of 45Ca2+ by mitochondria isolated from N6, O2'-dibutyryladenosine-3',5'-cyclic monophosphate (DB cyclic AMP)--treated PY815 cells. This showed that mitochondria isolated from DB cyclic AMP treated cells take up 45Ca2+ at a 30 per cent faster rate than mitochondria from untreated cells, although both mitochondria eventually reduce the total external Ca2+ to the same levels. 45Ca2+ precharged mitochondria from DB cyclic AMP-treated cells also leaked 45Ca2+ more slowly than those from untreated cells when they were recovered by filtration. Thus an apparently greater uptake of 45Ca2+ by mitochondria from DB cyclic AMP-treated cells was a consequence of the filtration procedure. In fact, mitochondria from DB cyclic AMP-treated cells contained less total Ca2+ than those from untreated cells, while DB cyclic AMP-treated cells also contained less total Ca2+ than untreated cells. The results suggest that mitochondria do not play an important role in controlling the growth of DB cyclic AMP-treated PY815 cells through effects on cytoplasmic Ca2+ availability.  相似文献   

2.
We identified a variant murine cytolytic T lymphocyte (CTL) clone which, in contrast to the parent clone and all other murine T cell populations tested, was found to have acquired spontaneously the ability to produce interferon-gamma (IFN-gamma) in response to recombinant interleukin 2 (rIL-2). IFN-gamma production in response to concanavalin A (Con A), which was characteristic of all T cell populations tested, was preserved in this variant. The IFN produced by the variant in response to either stimulus was active in both a macrophage-activating factor assay and an anti-viral assay. Both activities induced by either stimulus could be blocked by monoclonal anti-IFN-gamma antibodies. Upon Northern blot analysis using an IFN-gamma-specific cDNA probe, the IFN-gamma RNA isolated from variant cells stimulated with Con A or IL-2 were found to migrate equivalently. The unusual pattern of responsiveness in this variant CTL was exploited to compare the mechanisms involved in induction of IFN-gamma production by Con A or IL-2. Striking differences were observed. Unlike IFN-gamma production induced by Con A, IFN-gamma production induced by IL-2 was not accompanied by an elevation of intracellular Ca2+ levels, did not require physiologic extracellular Ca2+ levels, and was not inhibited by the immunosuppressive agent cyclosporin A. Thus, in this variant CTL clone, conditions that have ordinarily been associated in an obligate manner with lymphokine gene expression were found instead to be related to the specific mode of stimulation.  相似文献   

3.
Addition of either vasoactive intestinal peptide (VIP) or the Ca2+ ionophore, A23187, to confluent monolayers of the T84 epithelial cell line derived from a human colon carcinoma increased the rate of 86Rb+ or 42K+ efflux from preloaded cells. Stimulation of the rate of efflux by VIP and A23187 still occurred in the presence of ouabain and bumetanide, inhibitors of the Na+,K+-ATPase and Na+,K+,Cl- cotransport, respectively. The effect of A23187 required extracellular Ca2+, while that of VIP correlated with its known effect on cyclic AMP production. Other agents which increased cyclic AMP production or mimicked its effect also increased 86Rb+ efflux. VIP- or A23187-stimulated efflux was inhibited by 5 mM Ba2+ or 1 mM quinidine, but not by 20 mM tetraethylammonium, 4 mM 4-aminopyridine, or 1 microM apamin. Under appropriate conditions, VIP and A23187 also increased the rate of 86Rb+ or 42K+ uptake. Stimulation of the initial rate of uptake by either agent required high intracellular K+ and was not markedly affected by the imposition of transcellular pH gradients. The effect of A23187, but not VIP or dibutyryl cyclic AMP, was refractory to depletion of cellular energy stores. A23187-stimulated uptake was not significantly affected by anion substitution, however, stimulation of uptake by VIP required the presence of a permeant anion. This result may be due to the simultaneous activation of a cyclic AMP-dependent Cl- transport system. The kinetics of both VIP- and A23187-stimulated uptake and efflux were consistent with a channel-rather than a carrier-mediated K+ transport mechanism. The results also suggest that cyclic AMP and Ca2+ may activate two different kinds of K+ transport systems. Finally, both transport systems have been localized to the basolateral membrane of T84 monolayers, a result compatible with their possible regulatory role in hormone-activated electrogenic Cl- secretion.  相似文献   

4.
5.
The effect of cAMP on active Ca2+ extrusion across the plasma membrane of intact human platelets was studied using quin2, a fluorimetric indicator of free Ca2+ in the cytoplasmic compartment ([Ca2+]cyt). Elevations of cAMP were achieved by incubation with dibutyryl-cAMP or by forskolin, which was found to selectively elevate cAMP without affecting cGMP levels. Progress curves of Ca2+ extrusion from quin2-overloaded platelets were measured. The rate vs. [Ca2+]cyt characteristic was calculated as previously described (Johansson, J.S. and Haynes, D.H. (1988) J. Membr. Biol. 104, 147-163). Forskolin, at a maximally effective concentration of 10 microM, was shown to stimulate Ca2+ extrusion by increasing by a factor of 1.6 +/- 0.5 the Vm of a saturable component, previously identified with a Ca(2+)-Mg(2+)-ATPase located in the plasma membrane. Neither the Km (80 nM) or Hill coefficient (1.7 +/- 0.3) of the Ca(2+)-ATPase was affected. Forskolin had no effect on the linear, non-saturable component of extrusion (previously identified with a Na+/Ca2+ exchanger) over the [Ca2+]cyt range examined (50-1500 nM). Dibutyryl-cAMP (Bt2-cAMP, 1 mM) stimulated the Ca(2+)-Mg(2+)-ATPase component of Ca2+ extrusion by a factor of 2.0 +/- 0.6. Separate experiments showed that 10 microM forskolin reduces the resting [Ca2+]cyt from 112 nM to 96 nM. Mathematical analysis showed that this can be accounted for by the above-mentioned increase in Vm of the pump, countered by a 37-74% increase in the rate constant for passive Ca2+ leakage across the plasma membrane. The results suggest two mechanisms by which prostacyclin-induced elevation of cAMP inhibits platelet aggregation: (a) lowering of resting [Ca2+]cyt and (b) increasing the rate of Ca2+ extrusion after the initial influx or triggered release event.  相似文献   

6.
At least four different isoforms of phosphodiesterases (PDEs) are responsible for the hydrolysis of cAMP in cardiac cells. However, their distribution, localization and functional coupling to physiological effectors (such as ion channels, contractile proteins, etc.) vary significantly among various animal species and cardiac tissues. Because the activity of cardiac Ca2+ channels is strongly regulated by cAMP-dependent phosphorylation, Ca(2+)-channel current (ICa) measured in isolated cardiac myocytes may be used as a probe for studying cAMP metabolism. When the activity of adenylyl cyclase is bypassed by intracellular perfusion with submaximal concentrations of cAMP, effects of specific PDE inhibitors on ICa amplitude are mainly determined by their effects on PDE activity. This approach can be used to evaluate in vivo the functional coupling of various PDE isozymes to Ca2+ channels and their differential participation in the hormonal regulation of ICa and cardiac function. Combined with in vitro biochemical studies, such an experimental approach has permitted the discovery of hormonal inhibition of PDE activity in cardiac myocytes.  相似文献   

7.
A PC12 cell clone that responds to ATP with polyphosphoinositide hydrolysis and with a marked, biphasic intracellular free Ca2+ concentration ([Ca2+]i) response (composed by release from intracellular stores accompanied by stimulated influx from the medium), was pretreated with pertussis toxin. In the pretreated cells the responses induced by ATP were differently modified. Polyphosphoinositide hydrolysis and Ca2+ release were moderately inhibited whereas Ca2+ influx was enhanced. Pharmacological experiments revealed the influx enhancement to be sustained by neither voltage-gated nor second messenger-operated Ca2+ channels. Rather, a channel of the receptor-operated type activated by ATP (P2w receptor) appears to work under the negative control of a pertussis toxin-sensitive G protein, acting presumably by direct interaction with the channel in the plane of the plasma membrane.  相似文献   

8.
Activation, proliferation, or programmed cell death of T lymphocytes is regulated by the mitochondrial transmembrane potential (Deltapsi(m)) through controlling ATP synthesis, production of reactive oxygen intermediates (ROI), and release of cell death-inducing factors. Elevation of Deltapsi(m) or mitochondrial hyperpolarization is an early and reversible event associated with both T cell activation and apoptosis. In the present study, T cell activation signals leading to mitochondrial hyperpolarization were investigated. CD3/CD28 costimulation of human PBL elevated cytoplasmic and mitochondrial Ca(2+) levels, ROI production, and NO production, and elicited mitochondrial hyperpolarization. Although T cell activation-induced Ca(2+) release, ROI levels, and NO production were diminished by inositol 1,4,5-triphosphate receptor antagonist 2-aminoethoxydiphenyl borane, superoxide dismutase mimic manganese (III) tetrakis (4-benzoic acid) porphyrin chloride, spin trap 5-diisopropoxyphosphoryl-5-methyl-1-pyrroline-N-oxide, and NO chelator carboxy-2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide, mitochondrial hyperpolarization was selectively inhibited by carboxy-2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (-85.0 +/- 10.0%; p = 0.008) and, to a lesser extent, by 2-aminoethoxydiphenyl borane. Moreover, NO precursor (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate diethylenetriamine elicited NO and ROI production, Ca(2+) release, transient ATP depletion, and robust mitochondrial hyperpolarization (3.5 +/- 0.8-fold; p = 0.002). Western blot analysis revealed expression of Ca-dependent endothelial NO synthase and neuronal NO synthase isoforms and absence of Ca-independent inducible NO synthase in PBL. CD3/CD28 costimulation or H(2)O(2) elicited severalfold elevations of endothelial NO synthase and neuronal NO synthase expression, as compared with beta-actin. H(2)O(2) also led to moderate mitochondrial hyperpolarization; however, Ca(2+) influx by ionomycin or Ca(2+) release from intracellular stores by thapsigargin alone failed to induce NO synthase expression, NO production, or Deltapsi(m) elevation. The results suggest that T cell activation-induced mitochondrial hyperpolarization is mediated by ROI- and Ca(2+)-dependent NO production.  相似文献   

9.
The precise control of many T cell functions relies on cytosolic Ca(2+) dynamics that is shaped by the Ca(2+) release from the intracellular store and extracellular Ca(2+) influx. The Ca(2+) influx activated following T cell receptor (TCR)-mediated store depletion is considered to be a major mechanism for sustained elevation in cytosolic Ca(2+) concentration ([Ca(2+)](i)) necessary for T cell activation, whereas the role of intracellular Ca(2+) release channels is believed to be minor. We found, however, that in Jurkat T cells [Ca(2+)](i) elevation observed upon activation of the store-operated Ca(2+) entry (SOCE) by passive store depletion with cyclopiazonic acid, a reversible blocker of sarco-endoplasmic reticulum Ca(2+)-ATPase, inversely correlated with store refilling. This indicated that intracellular Ca(2+) release channels were activated in parallel with SOCE and contributed to global [Ca(2+)](i) elevation. Pretreating cells with (-)-xestospongin C (10 microM) or ryanodine (400 microM), the antagonists of inositol 1,4,5-trisphosphate receptor (IP3R) or ryanodine receptor (RyR), respectively, facilitated store refilling and significantly reduced [Ca(2+)](i) elevation evoked by the passive store depletion or TCR ligation. Although the Ca(2+) release from the IP3R can be activated by TCR stimulation, the Ca(2+) release from the RyR was not inducible via TCR engagement and was exclusively activated by the SOCE. We also established that inhibition of IP3R or RyR down-regulated T cell proliferation and T-cell growth factor interleukin 2 production. These studies revealed a new aspect of [Ca(2+)](i) signaling in T cells, that is SOCE-dependent Ca(2+) release via IP3R and/or RyR, and identified the IP3R and RyR as potential targets for manipulation of Ca(2+)-dependent functions of T lymphocytes.  相似文献   

10.
The effect of glucose on the cytoplasmic Ca2+ concentration ([Ca2+]i) of pancreatic beta-cells from ob/ob-mice was examined by dual wavelength recordings of the 340/380 nm fluorescence excitation ratio of fura-2. Single beta-cells responded to 11-20 mM glucose with an initial lowering of [Ca2+]i, followed by an increase usually manifested as large amplitude oscillations (300-500 nm) with a frequency of 0.2-0.5/min (a-type). Particularly in freshly isolated beta-cells, there were also superimposed fast oscillations with frequencies of 2-8/min amplitudes in the 70-250 nM range (b-type) and sometimes pronounced [Ca2+]i transients exceeding 250 nM with durations below 10 s (c-type). After addition of 1-100 nM glucagon or 1 mM of the dibutyryl or 8-bromo derivatives of cyclic AMP, glucose generated numerous b-type oscillations superimposed on those of the a-type or on an elevated steady-state level. The duration of the b-type oscillations increased slightly when glucose was raised from 11 to 16 mM. The c-type transients probably represent a separate reaction predominantly seen when raising cyclic AMP much above its normal concentration. It is concluded that glucose can induce fast oscillations of [Ca2+]i also in isolated beta-cells, especially when measures are taken to increase their cyclic AMP content.  相似文献   

11.
A chronically HIV-1-infected T cell clone (J1.1) derived from Jurkat cells was developed that possesses defects in CD3 signaling. This clone was phenotypically determined to be CD4- and express a reduced surface density of CD3 as compared with a pool of uninfected Jurkat clones. Although J1.1 could be induced with TNF-alpha to produce HIV-1 particles, stimulation via the CD3 (T3-Ti) complex, using mAb cross-linking, had no effect on viral production. Further investigation revealed that J1.1 secreted approximately 20-fold less IL-2 than did uninfected Jurkat cells after anti-CD3 treatment. In addition, a separate defect in Ca2+ mobilization was noted in the HIV-1-infected J1.1 line when compared with uninfected Jurkat cells after anti-CD3 cross-linking. The cell line described offers a new model in which to study the mechanisms of several defects directly imposed by HIV-1 on CD3+ cells.  相似文献   

12.
The expression of Lyt-2 on T lymphocytes has been postulated to correlate closely with restriction by, or alloreactivity to, class I MHC gene products, whereas I region-restricted or alloreactive populations appear to be associated with Lyt-1 and L3T4 expression. However, exceptions to this axiom among alloreactive T cells have been shown to exist. In this report we describe a clonal population of influenza virus-specific T lymphocytes that bears the Lyt-2+, L3T4- phenotype. Notably, this clone is restricted in influenza virus recognition by class II MHC molecules and is cytolytic for virus-infected target cells expressing the appropriate class II molecules. Antibody directed to the Lyt-2 molecule does not inhibit cytolysis.  相似文献   

13.
Stimulation of an IL-2-dependent variant of the Th2 clone D10.G4.1 with antibodies (Ab) specific for CD3 epsilon or the TCR-alpha beta caused either activation of the clone to secrete the autocrine lymphokine IL-4, or lethal activation in which the cells secreted high quantities of IL-4 but then died within 2 days. High densities of immobilized Ab delivered a lethal signal, whereas soluble forms of Ab and low densities of immobilized Ab caused productive activation in which cell viability was maintained. Lethal activation was not prevented by accessory cells, IL-1, or IL-2, or by co-cross-linkage of CD4 and TCR. The lethal signal was not mediated via a soluble effector from the activated cells. Lethal signaling was insensitive to cyclosporin A or dexamethasone. Studies with activators of protein kinase C (PKC), and PKC inhibitors, indicated that direct activation of PKC was not sufficient for lethal signaling. Nor could direct activation of PKC prevent the lethal signal. The lethal signal was not caused by Ca2+ mobilization mediated by Ca2+ ionophore and there was no evidence of apoptosis. The combination of a PKC activator and Ca2+ ionophore was not lethal, thereby showing that together these events are not sufficient. That these signal pathways were not necessary for lethal activation was evidenced by their inability to lower the density of immobilized anti-CD3 required to cause cell death. In this model, ligation of the TCR specifically activates a Ca2+/PKC-independent lethal signal transduction pathway.  相似文献   

14.
To elucidate the role of CD4 molecule in T cell activation, the effect of anti-CD4 on T cell IL-2 production was examined by using an alloreactive Th clone. The alloreactive T cell used in the present experiments produced IL-2 in response to soluble anti-CD3 epsilon-chain (anti-CD3) without accessory cell or insoluble antibody carrier. The IL-2 production was suppressed by the addition of anti-CD4 in cultures. An intracellular free Ca2+ concentration ([Ca2+]i) of the T cell clone was elevated by anti-CD3 stimulation, but the elevation was suppressed in the presence of anti-CD4. When the clone was stimulated in Ca2(+)-free medium, the elevation of [Ca2+]i was not observed. When Ca2+ influx was induced by calcium ionophore A23187 or ionomycin, the clone produced IL-2 in response to anti-CD3 in the presence of anti-CD4. When polyclonal T cell line or several other alloreactive T cell clones were examined for their anti-CD3 response, essentially the same results as mentioned above were obtained. Taken together, these results suggest that the slow and sustained elevation of [Ca2+]i is an essential signal for IL-2 production of T cells, and that anti-CD4 suppresses the IL-2 production by interfering the [Ca2+]i elevation. The significance of CD4 molecules in murine T cell activation was discussed.  相似文献   

15.
16.
To characterize the requirements for the induction of an anergic state in immunocompetent cells we examined the effect of an increase in intracellular calcium concentration on the subsequent responsiveness of cytolytic T cells to antigenic stimulation in vitro. Pretreatment of a murine cytolytic T cell clone with the calcium-ionophore A23187 resulted in the induction of an anergic state characterized by a decrease in cytolytic activity and granule exocytosis upon Ag-specific stimulation. Furthermore, IFN-gamma synthesis declined whereas de novo synthesis of a yet unidentified protein with a molecular mass of 33 kDa as well as proliferative response of cells in response to exogenous IL-2 were unaffected. This state of partial unresponsiveness 1) could be prevented by concomitant pretreatment of cells with cyclosporin A or protein synthesis inhibitors and 2) was reversible within 48 h. Biochemical analysis of TCR-induced intracellular activation revealed a block in signal transduction before the activation of protein kinase C because cellular unresponsiveness could be bypassed by the phorbol ester PMA plus the calcium-ionophore A23187. However, phosphatidylinositol turnover was markedly inhibited in unresponsive cells that also did not show a calcium influx on stimulation with concanavalin A. We conclude that a rise in intracellular calcium in cytolytic T cells might not only be necessary for cellular activation but may also trigger the induction of a partial unresponsiveness to antigenic stimulation due to an inhibition in the early phase of signal transduction.  相似文献   

17.
In the present study we evaluated the mechanisms behind the implication of the costimulatory molecule CD28 for the immune response against the intracellular protozoan parasite Trypanosma cruzi. Our results reveal a critical role for CD28 in the activation of both CD4+ and CD8+ T cells and induction of the effector mechanisms that ultimately mediate the control of parasite growth and pathogenesis in infected mice. CD28-deficient (CD28-/-) mice are highly susceptible to T. cruzi infection, presenting higher parasitemia and tissue parasitism, but less inflammatory cell infiltrate in the heart than C57Bl/6 wild-type (WT) mice. All the infected WT mice survived acute infection, whereas 100% of CD28-/- mice succumbed to it. The increased susceptibility of the CD28-/- mice was associated with a dramatic decrease in the production of IFN-gamma by both CD4+ and CD8+ T cells resulting in a diminished capacity to produce nitric oxide (NO) and mediate parasite killing. T cell activation was also profoundly impaired in CD28-/- mice, which presented decreased lymphoproliferative response after the infection compared to WT mice. Together, these data represent the first evidence that CD28 is critical for efficient CD4+ T cell activation in response to T. cruzi infection in mice.  相似文献   

18.
STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx   总被引:15,自引:0,他引:15  
Ca(2+) signaling in nonexcitable cells is typically initiated by receptor-triggered production of inositol-1,4,5-trisphosphate and the release of Ca(2+) from intracellular stores. An elusive signaling process senses the Ca(2+) store depletion and triggers the opening of plasma membrane Ca(2+) channels. The resulting sustained Ca(2+) signals are required for many physiological responses, such as T cell activation and differentiation. Here, we monitored receptor-triggered Ca(2+) signals in cells transfected with siRNAs against 2,304 human signaling proteins, and we identified two proteins required for Ca(2+)-store-depletion-mediated Ca(2+) influx, STIM1 and STIM2. These proteins have a single transmembrane region with a putative Ca(2+) binding domain in the lumen of the endoplasmic reticulum. Ca(2+) store depletion led to a rapid translocation of STIM1 into puncta that accumulated near the plasma membrane. Introducing a point mutation in the STIM1 Ca(2+) binding domain resulted in prelocalization of the protein in puncta, and this mutant failed to respond to store depletion. Our study suggests that STIM proteins function as Ca(2+) store sensors in the signaling pathway connecting Ca(2+) store depletion to Ca(2+) influx.  相似文献   

19.
The effect on cytosolic Ca2+ concentration ([Ca2+]i) of cAMP analogues and the adenylate cyclase-stimulating agents forskolin, isoproterenol and glucagon has been examined in an insulin-secreting beta-cell line (HIT T-15) using fura 2. All these manipulations of the cAMP messenger system promoted a rise in [Ca2+]i which was blocked by the Ca2+ channel antagonists verapamil and nifedipine or by removal of extracellular Ca2+. The action of the adenylate cyclase activator forskolin was glucose-dependent. The results suggest that cAMP elevates [Ca2+]i in HIT cells by promoting Ca2+ entry through voltage-sensitive Ca2+ channels, not through mobilization of stored Ca2+. Activation of Ca2+ influx may be an important component of the mechanisms by which cAMP potentiates fuel-induced insulin release.  相似文献   

20.
Mice with an established syngeneic T cell tumor (RBL5) received short term adoptive chemoimmunotherapy with CTL clone 1.B6 and murine rIFN-gamma. In comparison with treatment with either agent alone, the combination of 1.B6 and rIFN-gamma was associated with a dramatic increase in long term survival. No direct effects of rIFN-gamma on tumor cell proliferation, MHC Ag expression, or susceptibility to CTL-mediated lysis could be demonstrated to explain the prolongation of survival. However, rIFN-gamma induced a distinct increase in broad-spectrum cytolytic capacity of peritoneal exudate cells and further increased class II MHC expression on peritoneal macrophages. The explanation for enhanced adoptive chemoimmunotherapy after combined short term administration of a CTL clone and rIFN-gamma is uncertain. Potential mechanisms include direct tumor lysis by activated cells, indirect tumor lysis via sensitization to other lymphokines or monokines, improved Ag-specific activation of transferred CTL clones, and/or more effective development of de novo host anti-tumor immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号