首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
目的:研究环肽astin C在Caco-2细胞单层模型中的吸收机制。方法:研究astin C在Caco-2细胞单层模型中的双向转运,考察时间、药物浓度对astin C吸收的影响。采用高效液相色谱法检测astin C的浓度,计算其表观渗透系数(Papp)。结果:在Caco-2细胞单层模型中,astin C的吸收随着时间和浓度的增加药物吸收呈近似线性增加;Papp(A→B)明显大于Papp(B→A),存在方向差异性;astin C不是P-gp的底物。结论:Astin C在Caco-2细胞单层模型中的主要转运机制是AP侧膜转运蛋白所介导的主动转运。  相似文献   

2.
目的:将Caco-2细胞模型的改良研究特征及其在药物研究中的应用进展进行系统的总结,便于相同领域的研究人员能在实际研究中更科学有效的利用该细胞模型。方法:概述了近年来Caco-2细胞模型在药物相互作用、代谢及在药物剂型开发中应用情况,并查阅有关改良研究的文献,总结对Caco-2细胞模型进行的改良方法。结果与结论:Caco-2细胞模型在药物研究中有良好的吸收、代谢规律。其中包括通过基因重组、基因敲除或化学物质诱导改变转运蛋白表达和细胞内的代谢酶,增加私液层可以通过加入私蛋白或细胞共培养方式来完成,将培养周期缩短,增加药物溶解性与减少非特异性结合等。这些改良使该模型能更好地模拟体内生理条件,Caco-2细胞模型是药物体外研究十分稳定且良好的方法,能够使其在研究药物的吸收、代谢及高通量筛选中发挥及其显著的作用。  相似文献   

3.
目的:构建稳定表达人SidT2基因的BHK及MDCK细胞系,探讨SidT2基因过表达与细胞转运双链RNA(dsRNA)能力的关系。方法:根据人SidT2基因序列设计引物,克隆其编码区序列,经双酶切后与pEGFP-N3载体连接,构建其真核表达载体,分别瞬时转染BHK及MDCK细胞,并使用G418筛选稳定表达细胞系;在此基础上,体外转录合成绿色荧光蛋白(GFP)dsRNA,以GFP基因为报告基因,进一步分析过表达人SidT2基因对BHK及MDCK细胞转运dsRNA能力的影响。结果:经基因克隆、酶切、连接后,构建了人SidT2基因真核表达载体pEGFP-SidT2;经瞬时转染及G418筛选,获得稳定过表达人SidT2基因的BHK及MDCK细胞系,实时荧光定量RT-PCR分析表明,其SidT2基因转录水平分别提高71、64.5倍;稳定表达SidT2基因后,在培养液中添加GFP dsRNA,GFP荧光强度较对照细胞分别降低88.1%、73.7%,表明稳定表达SidT2基因的BHK、MDCK细胞转运dsRNA的能力显著增强。结论:构建了稳定表达人SidT2基因的BHK及MDCK细胞系,SidT2基因过表达可显著提高外源性dsRNA的转运能力。  相似文献   

4.
大量的研究已经证明,紫杉醇口服吸收较差,容易引起过敏性反应。为了克服紫杉醇的不足,我们制备了一种新的纳米紫杉醇药物,它由甘露醇与人血清白蛋白包裹紫杉醇颗粒制成,其具有更好的水溶性和较低的毒性。为了进一步研究纳米紫杉醇口服给药后的吸收效果,我们利用Caco-2细胞模型对纳米紫杉醇的跨膜转运量进行了测定,3 h内,纳米紫杉醇在0.5~20μmol.L-1的浓度内的转运量呈线性状态。从膜的顶端到底端的表观渗透系数Papp为(20.9±2.1×10-6cm.s-1;N=3),米氏方程常数KM值为相对较高的14.00μmol.L-1,这些数据表明纳米紫杉醇具有更好的吸收效果。  相似文献   

5.
【背景】短链脂肪酸(Short-ChainFattyAcids,SCFAs)具有提供能量、调节营养物质代谢、抑制内源性胆固醇合成等广泛的生理活性和生物学效应。【目的】利用建立的Caco-2细胞吸收SCFAs模型研究乳杆菌对肠吸收SCFAs的影响。【方法】通过跨膜电阻值(Transepithelial Electrical Resistance,TEER)、细胞超微结构、苯酚红通透量及细胞增殖-毒性试验等来综合评价Caco-2细胞吸收SCFAs模型的完整性和稳定性,并利用气相色谱-质谱联用仪测定乳杆菌干预前后模型中Caco-2细胞内丙酸和丁酸的含量。【结果】Caco-2细胞单层培养至第11天时的TEER值为1290.73Ω·cm~2,在第15天时为1 319.31Ω·cm~2,而且细胞间连接紧密并覆盖着一层垂直于细胞表面的微绒毛,苯酚红通透量小于1×10~(-6) cm/s,在1 mmol/L丙酸或丁酸分别作用3 h后,模型中Caco-2细胞的存活率较高,分别为99.03%和91.42%。植物乳杆菌(Lactobacillus plantarum) P54、P58、P67、P97、P123及P198干预后,模型中Caco-2细胞内丙酸含量均显著高于未接菌(P0.05);而发酵乳杆菌(Lactobacillus fermentum) F146和植物乳杆菌(Lactobacillus plantarum) P1干预后,胞内丁酸含量均显著高于未接菌(P0.05)。【结论】试验的乳杆菌在模型中能够促进Caco-2细胞对丙酸或丁酸的吸收。  相似文献   

6.
目的:基于RNA-Seq研究江西传统特色豆豉与肠上皮细胞的相互作用。方法:Caco-2细胞与豆豉水提样共孵育后,采用RNA-Seq筛选差异表达基因,进行KEGG、GO和PPI网络分析。结果:筛选差异表达基因17 892个,其中显著性240个,含上调表达125个、下调表达115个。KEGG功能注释215个信号通路,主要富集在新陈代谢、免疫系统、细胞调控、细胞粘附等类别。GO分析主要涉及免疫应答、细胞结构及功能调控、营养素代谢、神经传导及激素分泌调节等生物学过程。PPI网络分析在STRING数据库内有效注释的204个基因编码的蛋白互作,其中IL8、VCL、NFKBIA等节点度较高。结论:江西传统特色豆豉可引起肠上皮细胞多类基因差异表达,为阐明豆豉对肠道健康作用的分子机制提供科学依据。  相似文献   

7.
采用一种体外培养的人小肠上皮细胞模型Caco-2研究了铜、铁、锌、维生素C、蔗糖、草酸钠、乙二胺四乙酸以及柠檬酸钠对三氯化铬和吡啶羧酸铬跨细胞转运的影响, 旨在探讨各种因素对不同形式三价铬吸收影响的差异.结果表明: 铁显著降低了吡啶羧酸铬和三氯化铬在Caco-2细胞中的转运量( P<0.05), 而铜和锌对它们的转运量没有产生显著影响(P>0.05); 维生素C、蔗糖、草酸钠、乙二胺四乙酸和柠檬酸钠对吡啶羧酸铬的转运量没有产生显著影响( P>0.05), 但维生素C和草酸钠显著增加了三氯化铬在Caco-2细胞中的转运量( P<0.05), 蔗糖则显著降低了三氯化铬的转运量(P<0.05).结果提示三氯化铬相对于吡啶羧酸铬而言, 在吸收时更容易受到各种因素的影响.  相似文献   

8.
【目的】研究嗜酸乳杆菌NCFM对肠道上皮细胞中免疫与炎症介质因子PTX3表达的影响,并进一步揭示其调节机制。【方法】嗜酸乳杆菌NCFM与Caco-2细胞共培养0、2、4、8和12 h,提取细胞RNA,采用RealTime RT-PCR方法检测PTX3基因的表达。嗜酸乳杆菌NCFM与Caco-2细胞共培养0、0.5、1、2和4 h,提取细胞蛋白质,采用Western blot方法检测NF-κB的磷酸化水平;用NF-κB的特异性抑制剂PDTC预处理Caco-2细胞30 min,然后加入嗜酸乳杆菌NCFM作用2 h,提取细胞RNA,采用Real Time RT-PCR方法检测PTX3基因的表达。【结果】嗜酸乳杆菌NCFM与Caco-2细胞共培养后能诱导PTX3的表达,并且在共培养4 h的时候PTX3的表达量达到最大,然后逐渐下降;嗜酸乳杆菌NCFM能快速的诱导NF-κB的磷酸化,并且在加入其特异性抑制剂PDTC后,PTX3的表达显著下降。【结论】嗜酸乳杆菌NCFM作用于肠道上皮细胞后能够通过迅速激活NF-κB途径暂时性的调控PTX3的表达。  相似文献   

9.
该研究主要探讨lncRNA H2k2对高糖培养的肾小球系膜细胞增殖的影响,采用qRTPCR检测lncH2k2在正常及糖尿病肾病小鼠肾脏组织中的表达,以及高低糖培养的系膜细胞中的表达;FISH与qRT-PCR检测lncH2k2的亚细胞定位;qRT-PCR检测lncH2k2过表达质粒及siRNA的转染效率;EdU检测转染lncH2k2过表达质粒或siRNA后系膜细胞增殖的变化。结果表明,lncH2k2在糖尿病肾病小鼠肾脏组织及高糖培养的系膜细胞中的表达升高,且lncH2k2主要分布于系膜细胞的细胞质中。在低糖培养的系膜细胞中转染lncH2k2过表达质粒后,与低糖培养的系膜细胞相比,过表达lncH2k2的低糖培养的系膜细胞增殖能力显著提高,并且将qRT-PCR检测筛选出的一条lncH2k2 siRNA转染到高糖培养的系膜细胞内,与高糖培养的系膜细胞相比,敲低lncH2k2后系膜细胞增殖能力显著降低。研究结果揭示,lncRNA H2k2在糖尿病肾病小鼠肾脏组织及系膜细胞中表达显著,lncRNA H2k2促进了系膜细胞增殖,这些结果表明,lncRNA H2k2可能参与了糖尿病肾病的发生发展。  相似文献   

10.
《生命科学研究》2016,(3):248-254
人尿酸盐阴离子转运体1(human urate anion transporter 1,hURAT1)是人肾小管重吸收尿酸的主要转运蛋白,以hURAT1为靶点,筛选hURAT1抑制剂是近年来降尿酸药物开发的热点,因此建立hURAT1抑制剂体外细胞筛选模型具有重要的意义与实用价值。本实验首先构建了表达SLC22A1 2(hURAT1编码基因)的慢病毒载体,感染MDCK细胞后,通过G41 8筛选出稳转细胞株(稳转株);随后采用W estern-blot及免疫荧光方法检测目的蛋白的表达,并通过液闪计数仪检测hURAT1稳转株对[~(14)C]尿酸的摄取作用及hURAT1抑制剂苯溴马隆、丙磺舒对[~(14)C]尿酸摄取的抑制效果。实验结果显示,hURAT1稳转株目的蛋白表达量为对照稳转株的两倍,并且吸收尿酸的量明显大于对照细胞(P0.001)。此外,实验中测得hURAT1稳转株对尿酸吸收的Km值为365.4μmol/L,苯溴马隆及丙磺舒对尿酸吸收的IC_(50)分别为0.1 8μmol/L和66.82μmol/L。以上结果表明,本实验成功构建了稳定表达hURAT1的MDCK细胞株,并建立了一套hURAT1抑制剂体外准确筛选和评价的方法体系。  相似文献   

11.
The gastrointestinal tract remains the most popular and acceptable route of administration for drugs. It offers the great advantage of convenience and many compounds are well absorbed and thereby provide acceptable plasma concentration-time profiles. Currently there is considerable interest from the pharmaceutical industry in development of cell culture systems that would mimic the intestinal mucosa in order to evaluate strategies for investigating and/or enhancing drug absorption. The intestinal epithelial cells of primary interest, from the standpoint of drug absorption and metabolism, are the villus cells, which are fully differentiated cells. Anin vitro cell culture system consisting of a monolayer of viable, polarized and fully differentiated villus cells, similar to that found in the small intestine, would be a valuable tool in the study of drug and nutrient transport and metabolism.The Caco-2 cell line, which exhibits a well-differentiated brush border on the apical surface and tight junctions, and expresses typical small-intestinal microvillus hydrolases and nutrient transporters, has proven to be the most popularin vitro model (a) to rapidly assess the cellular permeability of potential drug candidates, (b) to elucidate pathways of drug transport (e.g., passive versus carrier mediated), (c) to assess formulation strategies designed to enhance membrane permeability, (d) to determine the optimal physicochemical characteristics for passive diffusion of drugs, and (e) to assess potential toxic effects of drug candidates or formulation components on this biological barrier. Since differentiated Caco-2 cells express various cytochrome P450 isoforms and phase II enzymes such as UDP-glucuronosyltransferases, sulfotransferases and glutathione-S-transferases, this model could also allow the study of presystemic drug metabolism.  相似文献   

12.
The main oral drug absorption barriers are fluid cell membranes and generally drugs are absorbed by a passive diffusion mechanism. Biopartitioning micellar chromatography (BMC) is a mode of micellar liquid chromatography that uses micellar mobile phases of Brij35 under adequate experimental conditions and can be useful to mimic the drug partitioning process in biological systems. In this paper the usefulness of BMC for predicting oral drug absorption in humans is demonstrated. A hyperbolic model has been obtained using the retention data of a heterogeneous set of 74 compounds, which shows predictive ability for drugs absorbed by passive diffusion. The model obtained in BMC is compared with those obtained using the well-known systems (Caco-2 and TC-7) that use intestinal epithelium cell lines. The use of BMC is simple, reproducible and can provide key information about the transport properties of new compounds during the drug discovery process.  相似文献   

13.
Monolayers of a well differentiated human intestinal epithelial cell line, Caco-2, were used as a model to study passive drug absorption across the intestinal epithelium. Absorption rate constants (expressed as apparent permeability coefficients) were determined for 20 drugs and peptides with different structural properties. The permeability coefficients ranged from approximately 5 x 10(-8) to 5 x 10(-5) cm/s. A good correlation was obtained between data on oral absorption in humans and the results in the Caco-2 model. Drugs that are completely absorbed in humans had permeability coefficients greater than 1 x 10(-6) cm/s. Drugs that are absorbed to greater than 1% but less than 100% had permeability coefficients of 0.1-1.0 x 10(-6) cm/s while drugs and peptides that are absorbed to less than 1% had permeability coefficients of less than or equal to 1 x 10(-7) cm/s. The results indicate that Caco-2 monolayers can be used as a model for studies on intestinal drug absorption.  相似文献   

14.
Liu Y  Hunt CA 《Bio Systems》2005,82(2):154-167
We report the development and use of a synthetic, discrete event, discrete space model that functions as an epithelio-mimetic device (EMD). It is intended to facilitate the study of intestinal transport of drug-like compounds. We represent passive paracellular and transcellular transport, carrier-mediated transport and active efflux using stand-alone components. Systematic verification of the EMD over a wide physiologically realistic range is essential before we can use it to address questions regarding the details of the interacting mechanisms that are believed to influence absorption. We report details of key verification experiments. We demonstrate that this device can generate behaviors similar to those observed in the in vitro Caco-2 transwell system. To do that we used a series of hypothetical drugs and we simulated behaviors for two clinically used drugs, alfentanil and digoxin. The results support the feasibility and practicability of the EMD as a tool to expand the experimental options for better understanding the biological processes involved in intestinal transport and absorption of compounds of interest.  相似文献   

15.
Several in vitro assays have been developed to evaluate the gastrointestinal absorption of compounds. Our aim was to compare 3 of these methods: 1) the bio-mimetic artificial membrane permeability assay (BAMPA) method, which offers a high-throughput, noncellular approach to the measurement of passive transport; 2) the traditional Caco-2 cell assay, the use of which as a high-throughput tool is limited by the long cell differentiation time (21 days); and 3) The BioCoat high-throughput screening Caco-2 Assay System, which reduces Caco-2 cell differentiation to 3 days. The transport of known compounds (such as cephalexin, propranolol, or chlorothiazide) was studied at pH 7.4 and 6.5 in BAMPA and both Caco-2 cell models. Permeability data obtained was correlated to known values of human absorption. Best correlations (r = 0.9) were obtained at pH 6.5 for BAMPA and at pH 7.4 for the Caco-2 cells grown for 21 days. The Caco-2 BioCoat HTS Caco-2 Assay System does not seem to be adequate for the prediction of absorption. The overall results indicate that BAMPA and the 21-day Caco-2 system can be complementary for an accurate prediction of human intestinal absorption.  相似文献   

16.
The uptake and transepithelial transport of the three main constituents macrocarpal A (M-A), macrocarpal B (M-B), and cypellocarpa C (Cy-C) from the fruits of Eucalyptus globulus Labill. were investigated. Monolayers of the human intestinal epithelial cancer cell line Caco-2 were incubated with M-A, M-B, and Cy-C to model its intestinal absorption and transport, respectively. The determination of compounds was performed by HPLC. The apparent permeability coefficients (P(app)) for M-A, M-B, and Cy-C in the apical-to-basolateral direction of a Caco-2 monolayer were (1.70+/-0.06)x10(-6), (1.99+/-0.10)x10(-6), and (6.08+/-0.41)x10(-6)cm/s, respectively. In the presence of iodoacetamide, the P(app) of Cy-C were both reducted in apical-to-basolateral and basolateral-to-apical directions. M-A and M-B appear to accumulate in the epithelial cells. The intestinal absorption of M-A, M-B, and Cy-C was passive diffusion as the dominating process and Cy-C was partly ATP-dependent.  相似文献   

17.
The human intestinal Caco-2 cell line has been extensively used over the last twenty years as a model of the intestinal barrier. The parental cell line, originally obtained from a human colon adenocarcinoma, undergoes in culture a process of spontaneous differentiation that leads to the formation of a monolayer of cells, expressing several morphological and functional characteristics of the mature enterocyte. Culture-related conditions were shown to influence the expression of these characteristics, in part due to the intrinsic heterogeneity of the parental cell line, leading to selection of sub-populations of cells becoming prominent in the culture. In addition, several clonal cell lines have been isolated from the parental line, exhibiting in general a more homogeneous expression of differentiation traits, while not always expressing all characteristics of the parental line. Culture-related conditions, as well as the different Caco-2 cell lines utilized in different laboratories, often make it extremely difficult to compare results in the literature. This review is aimed at summarizing recent, or previously unreviewed, data from the literature on the effects of culture-related factors and the influence of line sub-types (parental vs. different clonal lines) on the expression of differentiation traits important for the use of Caco-2 cells as a model of the absorptive and defensive properties of the intestinal mucosa. Since the use of Caco-2 cells has grown exponentially in recent years, it is particularly important to highlight these methodological aspects in order to promote the standardization and optimisation of this intestinal model.  相似文献   

18.
He Y  Zeng S 《Chirality》2006,18(1):64-69
This study aimed to determine the transport characteristics of chiral drug enantiomers across Caco-2 cell monolayers as a model of human intestinal epithelial membrane. Esmolol was chosen as a model drug, and the study focused on the transepithelial transport of esmolol enantiomers in this in vitro model system. Separation and quantitation of (S)- and (R)-esmolol were performed by RP-HPLC with the use of GITC as a precolumn derivatizing agent. Bidirectional transport studies of 5.0-400.0 micromol/l esmolol demonstrated that the two enantiomers were transported mainly by a passive, transcellular mechanism. At concentrations of 5.0-100.0 micromol/l, enantioselective permeability of esmolol was observed. In the absorptive transport, Papp of (S)-esmolol was smaller than (R)-esmolol and vice versa for secretory transport. The enantioselectivity disappeared when the drug concentration was increased to 200.0 micromol/l. In conclusion, the transport characteristics of (S)- and (R)-esmolol were distinctly different. An enantioselective carrier-mediated mechanism in addition to passive diffusion was involved in the transport process of esmolol across Caco-2 cell monolayers.  相似文献   

19.
Because MDR1 (P-glycoprotein) plays an important role in pharmacokinetics such as absorption and excretion of xenobiotics and multidrug resistance, an understanding of the factors regulating its function and expression is important. Here, the effects of digoxin on cell sensitivity to an anticancer drug, MDR1 function, and expression were examined by assessing the growth inhibition by paclitaxel, the transport characteristics of the MDR1 substrate Rhodamine123, and the level of MDR1 mRNA, respectively, using human colon carcinoma Caco-2 cells, which are widely used as a model of intestinal epithelial cells. The sensitivity to paclitaxel, an MDR1 substrate, in Caco-2 cells pretreated with digoxin was lower than that in non-treated cells. The accumulation of Rhodamine123 was reduced by pretreatment with digoxin and its efflux was enhanced. The level of MDR1 mRNA in Caco-2 cells was increased in a digoxin concentration-dependent manner. These results taken together suggested that digoxin up-regulates MDR1 in Caco-2 cells.  相似文献   

20.
The role of glycans in the apical targeting of proteins in epithelial cells remains a debated question. We have expressed the mouse soluble dipeptidyl peptidase IV (DPP IV ectodomain) in kidney (MDCK) and in intestinal (Caco-2) epithelial cell lines, as a model to study the role of glycosylation in apical targeting. The mouse DPP IV ectodomain was secreted mainly into the apical medium by MDCK cells. Exposure of MDCK cells to GalNac-alpha-O-benzyl, a drug previously described as an inhibitor of mucin O-glycosylation, produced a protein with a lower molecular weight. In addition this treatment resulted in a decreased apical secretion and an increased basolateral secretion of mouse DPP IV ectodomain. When expressed in Caco-2 cells, the mouse DPP IV ectodomain was secreted mainly into the basolateral medium. However, BGN was still able to decrease the amount of apically secreted protein and to increase its basolateral secretion. Neuraminidase digestion showed that the most striking effect of BGN was a blockade of DPP IV sialylation in both MDCK and Caco-2 cells. These results indicate that a specific glycosylation step, namely, sialylation, plays a key role in the control of the apical targeting of a secreted DPP IV both in MDCK and Caco-2 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号