首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
综述了荧光型真菌毒素检测生物传感器的研究进展,重点介绍了荧光型真菌毒素检测生物传感器的设计及其灵敏度、特异性等性能,分析了黄曲霉毒素等主要毒素的免疫荧光传感器和适配体荧光传感器的检测方法,提出将来的研究可以针对纳米材料/纳米复合材料的表面化学调节,设计用于检测各种分析物的目标特定无标签分析方法,实现毒素的多种同时检测。  相似文献   

2.
荧光铜纳米簇(Fluorescent copper nanoclusters,CuNCs)是以脱氧核糖核酸链(Deoxyribonucleic acid,DNA)为模板,以二价铜离子(Cu2+)、抗坏血酸等为反应物生成的铜晶体,纳米级大小,其具有荧光性,可以作为生物传感器输出信号的一种方式。荧光铜纳米簇的生成快速、简便、安全,因此近年来涌现出很多关于荧光铜纳米簇原理和应用方面的研究。从支持传感器工作的介导物质以及信号输出方式两方面对荧光铜纳米簇进行分类,详细阐述了每一类别传感器工作的原理,并对比同类型传感器的优缺点,最后对荧光铜纳米簇介导的生物传感器目前存在的不足及今后的发展趋势进行了展望。以便读者对荧光铜纳米簇生物传感器发展历程和方向,对荧光铜纳米簇生物传感器的实用性和多形性有所了解,在未来的研究发展中得到启示,使荧光铜纳米簇成为一种更加实用和便捷的生物传感工具。  相似文献   

3.
DNA分子导线具有独特的导电性能和塞贝克(Seebeck)效应,它是构筑电化学纳米生物传感器和热电偶生物传感器的理想材料。文章简要介绍了DNA分子导线的制备方法及导电机理,以及基于DNA分子导线的纳米生物传感器的分子识别机制,着重分析了基于DNA分子导线的纳米生物传感器的传感原理。文章还介绍了基于DNA分子导线的纳米生物传感器在基因分析、单碱基突变检测等方面的应用。  相似文献   

4.
比色生物传感技术由于具有灵敏度高、方法简单并且容易操作等优点,已广泛应用于生物环境中污染物检测、生物体内重要标志物的检测以及癌症筛查等多个领域。基于纳米酶的比色生物传感器主要是借助纳米酶自身所具有的催化能力,模拟类过氧化物酶活性,将显色剂氧化生成有色溶液,从而实现可视化检测,并通过对有色溶液吸光度的检测得到相关物质的含量。与无纳米酶的比色生物传感器相比,基于纳米酶的比色生物传感器具有选择性更高、检测更快以及灵敏度更高等优点。纳米酶在具有天然酶活性的同时还具有成本低、稳定性好的、易于合成等优点,其相关研究越来越广泛。目前,基于纳米酶的比色生物传感器已成为辅助相关医学检测的重要方法,同时也广泛应用于便携和实时性相关检测当中,为医学检测提供了重要的支持和保障。为了提高比色生物传感器的灵敏度以及应用范围,研究人员也在致力于增加可检测物质的种类以及纳米酶种类的多样化等。本文主要介绍基于纳米酶的比色生物传感器的检测原理、几类典型的纳米酶,以及基于纳米酶的比色生物传感器在生物医学检测领域中的应用情况和研究进展。  相似文献   

5.
金纳米簇(AuNCs)作为一种新型荧光纳米材料,是由几个到约一百个金原子组成的分子聚集体,因制备简单、光学性质优异以及毒性低等特性,近年来在生物传感领域得到了广泛应用。本文首先对以巯基化合物、树枝状化合物、多肽和蛋白质、寡核苷酸DNA等为模板制备AuNCs的模板法及其优点进行阐述,对AuNCs的紫外吸收、荧光及电化学性质进行介绍,之后重点总结基于荧光AuNCs的生物传感器在生物大分子及小分子检测中的应用,最后对AuNCs应用于生物传感领域所面临的挑战进行分析,并对其应用前景进行展望。  相似文献   

6.
磁小体(Bacterial magnetosomes,BMs)是由趋磁细菌(Magnetotactic bacteria,MTB)合成的用于在其水生栖息地中进行地磁导航的专用细胞器,由外部的脂质双层膜和内部的磁性纳米晶体组成。其具有粒径分布窄、形态均匀、单磁畴、顺磁性、比表面积大及生物相容性高等特点被广泛应用于医疗领域,可作为抗癌药物的递送载体、核磁共振成像对比剂和成像探针等。目前,基于BMs制备生物传感器并应用于生物检测技术领域的研究相对较少,且主要偏向于在BMs膜的表面共价或非共价修饰上抗体,利用抗原抗体之间的特异性免疫反应来实现靶物质的检测。综述了BMs的结构和组成、基本特性、提取和纯化、形态结构表征及其在靶物质富集方面的应用,并着重介绍了几类以BMs为基础的生物传感器如电化学生物传感器、荧光生物传感器、磁生物传感器等,讨论了磁小体介导的生物传感器在应用研究中的实际意义及其存在的问题。展望了磁小体介导的生物传感器的发展前景,面临的机遇及挑战,以期为促进磁小体介导的生物传感器的实际应用提供参考。  相似文献   

7.
介绍了纳米电化学DNA生物传感器的基本概念和分类,并介绍了用于DNA标记的纳米粒子的六种类型及其三大检测方法,在此基础上对纳米电化学DNA生物传感器在基因检测、疾病诊断、DNA检测等方面的最新进展进行了综述与讨论。  相似文献   

8.
DNA/银纳米簇(DNA/Silver nanoclusters,DNA / Ag NCs)是以DNA为模板,NaBH_4和银离子为反应物生成的一种新型荧光纳米材料。近年来,银纳米簇以其出色的光物理性质、良好的生物相容性、低成本、低毒性等优点成为了生物传感器设计及应用研究的一个热点。对DNA/银纳米簇介导的生物传感器的信号输出方式进行分类,并总结了DNA / Ag NCs在体内成像和抑菌方面的应用;最后,对DNA/Ag NCs介导的生物传感器目前存在的不足及今后的发展趋势进行了展望。  相似文献   

9.
纳米粒子标记DNA探针在电化学DNA生物传感器中的应用   总被引:3,自引:0,他引:3  
高梅 《生物磁学》2006,6(1):16-19
介绍了纳米电化学DNA生物传感器的基本概念和分类,并介绍了用于DNA标记的纳米粒子的六种类型及其三大检测方法,在此基础上对纳米电化学DNA生物传感器在基因检测、疾病诊断、DNA检测等方面的最新进展进行了综述与讨论.  相似文献   

10.
对特异核苷酸序列的高选择性检测在生物医学研究和临床检测中日趋重要. 纳米金特殊的光学性质、电学性质、化学性质、以及良好的生物相容性,使之成为检测生物大分子的首选工具.本文介绍了几种典型的基因突变检测及单核苷酸多态性(SNP)分析系统:基因芯片、生物传感器和光学检测系统.综述了多种颇有新意的检测方法和原理,详细阐明了它们的检测机制和研究进展,分析并比较了纳米金不同的作用方式,为纳米金在突变检测上的进一步研究提供了一定思路和参考.  相似文献   

11.
Nanomaterial-based nanobiosensors (nanobiodevices or nanobioprobes) are increasingly emphasized. Here, quantum dots and gamma-Fe(2)O(3) magnetic nanoparticles were co-embedded into single swelling poly(styrene/acrylamide) copolymer nanospheres to fabricate fluorescent-magnetic bifunctional nanospheres. Subsequently, fluorescent-magnetic-biotargeting trifunctional nanobiosensors (TFNS) modified with wheat germ agglutinin (WGA), peanut agglutinin (PNA) or Dolichos biflorus agglutinin (DBA) were conveniently produced so as to bind with A549 cells which are surface-expressed with N-acetylglucosamine, d-galactosamine and N-acetylgalactosamine residues. The values of WGA, PNA and DBA on each nanobiosensor were calculated to be 40, 14 and 60, respectively. These three kinds of lectin-modified trifunctional nanobiosensors (lectin-TFNS) can be used for qualitative and quantitative analysis of the glycoconjugates on A549 cell surface. The fluorescence intensity of WGA-modified nanobiosensors related to N-acetylglucosamine on A549 cell surface was much higher than that of PNA-modified nanobiosensors corresponding to d-galactosamine and that of N-acetylgalactosamine-related DBA-modified nanobiosensors, which is consistent with the results detected by flow cytometry. Lectin-modified trifunctional nanobiosensors not only can quantify the different glycoconjugates on A549 cell surface, but also can recognize and isolate A549 cells. 0.5mg of WGA-modified fluorescent-magnetic trifunctional nanobiosensors could capture 7.0 x 10(4) A549 cells. Therefore, the lectin-modified trifunctional nanobiosensors may be applied in mapping the glycoconjugates on cell surfaces and for recognition and isolation of targeted cells.  相似文献   

12.
Various nanobiosensors composed of biomaterials and nanomaterials have been developed, due to their demonstrated advantage of showing high performance. Among various biomaterials for biological recognition elements of the nanobiosensor, sensory receptors, such as olfactory and taste receptors, are promising biomaterials for developing nanobiosensors, because of their high selectivity to target molecules. Field-effect transistors(FET) with nanomaterials such as carbon nanotube(CNT), graphene, and conducting polymer nanotube(CPNT), can be combined with the biomaterials to enhance the sensitivity of nanobiosensors.Recently, many efforts have been made to develop nanobiosensors using biomaterials, such as olfactory receptors and taste receptors for detecting various smells and tastes. This review focuses on the biomaterials and nanomaterials used in nanobiosensor systems and studies of various types of nanobiosensor platforms that utilize olfactory receptors and taste receptors which could be applied to a wide range of industrial fields, including the food and beverage industry, environmental monitoring, the biomedical field, and anti-terrorism.  相似文献   

13.
Recent advances in nanotechnologies resulted in significant progress in the development of sensor systems based on nanocomposite materials. This review summarizes own and literature data on the sensor system based on hemoproteins which are functionally important for medicine. Special attention is paid to the electrochemical nanobiosensors and principles of functioning of the nanobiosensor medical systems.  相似文献   

14.
Neurotransmitters maintain physiological condition and behaviour of the brain and body. Studies on transmitting mechanisms and change in concentration of particular neurotransmitters provide knowledge about how these substances enhance our ability to interpret complex neural pathophysiology and thus advancing us towards developing new therapeutic and diagnostic intervention. Since the role of neurotransmitters in the cognitive processes are much complex, therefore their detection-based analysis leads to expand our understanding on their functions and early disease detection. One of the most crucial aspects of neuroscience is developing profound understanding of neurotransmitter release kinetics. As compared to other techniques, employing nanobiosensors for studying neurotransmission and dynamic changes in neurons exhibit relatively fast, accurate and significant results where other techniques generally fail. Using advanced techniques, high sensitivity and specificity also furnish precise information of neurotransmitter transport at the cellular level. Over the past few years, the advanced nanomaterials in combination of various biomolecules and distinct polymers are widely used in development of biosensing platforms for in-vivo and in-vitro point of care neurotransmitters detection. The review article is focused upon summarizing present status of nanobiosensors based neurotransmitter detection for clinical samples. This firstly describes the importance of neurotransmitters, conventional methods for neurotransmitters detection; need of developing advanced sensing methods and importance of nanomaterials to develop these sensing platforms. Secondly, current status of developed electrochemical and optical nanosensors for different neurotransmitters detection is elaborated in detail. The reported work extensively explains the importance of nano based sensing platforms for understating of neurotransmitters detection. Last section of the review summarized the future perspectives of nanosensors in clinical set-up for neurotransmitter detection.  相似文献   

15.
The development of optical nanosensors for biological measurements   总被引:10,自引:0,他引:10  
This article discusses and documents the basic concepts of, and developments in, the field of optical nanosensors and nanobiosensors. It describes the progression of this field of research from its birth up to the present, with emphasis on the techniques of sensor construction and their application to biological systems. After a brief overview of the techniques for fabricating nanometer-sized optical fibers, we describe the various types of transducer and bioreceptor molecule presently used for nanosensor and nanobiosensor fabrication.  相似文献   

16.
One of the most promising applications of nanomaterials is that of nanobiosensors, using biomolecules such as nucleic acids as receptors. This study aimed to synthesize nickel oxide nanoparticles (NiO NPs) by an environmentally friendly green synthesis, using the extract of the herb Coriandrum sativum (coriander). The synthesized NPs were characterized using UV–Visible spectroscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, X‐ray photon spectroscopy, field emission scanning electron microscopy coupled with energy dispersive spectroscopy, dynamic light scattering, zeta potential and transmission electron microscopy. All results confirmed the synthesis of pure, spherical, positively charged NiO NPs of around 95 nm in diameter with prominent hydroxyl groups attached to the surface. Furthermore, interaction studies of synthesized NiO NPs with calf thymus DNA (CT DNA) were performed using UV–Visible spectroscopy, UV–thermal melting, circular dichroism, and fluorescence spectroscopy. CT DNA served as a substitute for nucleic acid biosensors. All experimental studies indicated that the NiO NPs bound electrostatically with CT DNA. These studies may facilitate exploring the potential of NiO NP–nucleic acid conjugated materials to be used as nanobiosensors for various applications, especially in pharmacological, epidemiological, and environmental diagnostic applications, and in detection.  相似文献   

17.
In this paper, we investigate the ability of the gold nanorods (GNRs) to detect some proteins and demonstrate their potential to be used as plasmonic nanobiosensors. The GNRs were synthesized by a two-step seed-mediated growth procedure at room temperature. Firstly, a seed solution of gold nanoparticles was synthesized in the presence of cetyltrimethylammonium bromide surfactant and, subsequently, incorporated with appropriate amount of silver nitrate and tetrachloroauric acid solutions to grow GNRs with average length of 50 nm and diameter of 14 nm. We study the interaction of GNRs with proteins whose molecular weight varies from 6.5 up to 75 kDa. We investigate the resulting solutions by means of UV–vis absorption spectroscopy to determine the effect of the proteins characteristics on the shift of the localized surface plasmon resonance (LSPR). We show that for the case when proteins are in large excess compared to the GNRs concentration, whatever the protein is, the LSPR shift is constant and does not depend on the protein molecular weight. Moreover, we have been able to demonstrate that the sensitivity of such LSPR sensor is around 10–9 M/nm on a concentration range from 10–10 to 10–8 M. Some comparison with finite-difference time-domain simulations have also shown that the number of proteins adsorbed at the GNRs surface is around 40.  相似文献   

18.
Nanotechnology is the creation and utilization of materials, devices, and systems through the control of matter on the nanometer. The technology has been applied to biodevices such as bioelectronics and biochips to improve their performances. Nanoparticles, such as gold (Au) nanoparticles, are the most widely used of the various other nanotechnologies for manipulation at the nanoscale as well as nanobiosensors. The immobilization of biomolecules is playing an increasingly important role in the development of biodevices with high performance. Nanopatterning technology, which is able to increase the density of chip arrays, offers several advantages, including cost lowering, simultaneous multicomponent detection, and the efficiency increase of biochemical reactions. A microfluidic system incorporated with control of nanoliter of fluids is also one of the main applications of nanotechnologies. This can be widely utilized in the various fields because it can reduce detection time due to tiny amounts of fluids, increase signal-to-noise ratio by nanoparticles in channel, and detect multi-targets simultaneously in one chamber. This article reviews nanotechnologies such as the application of nanoparticles for the detection of biomolecules, the immobilization of biomolecules at nanoscale, nanopatterning technologies, and the microfluidic system for molecular diagnosis.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号