首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The growth responses of seedlings of Amphipterygium adstringens, Caesalpinia eriostachys, and C. platyloba, species associated with undisturbed parts of the tropical deciduous forest in México, and Apoplanesia paniculata and Heliocarpus pallidus, two gap-requiring pioneer species, were determined under contrasting light conditions in a growth chamber experiment. The high (400 mol m–2 s–1) and low (80 mol m–2 s–1) light treatments correspond to the light available in a medium size gap and underneath the vegetation canopy in the deciduous forest during the rainy season, respectively. Following four destructive harvests the biomass production, relative growth rate, root/shoot ratio, specific leaf area, net assimilation rate, leaf area ratio and light dependency were determined for all species. In the high light treatment all species achieved higher relative growth rates and net assimilation rates than when growing at low light intensity. However, the two pioneer species showed the highest light dependency and were the species more affected by the low light treatment in biomass production. The two Caesalpinia species showed similar growth responses, but C. platyloba was the most shade tolerant species. Plastic adjustments in terms of the specific leaf area were more evident in the two pioneer species.  相似文献   

2.
We evaluated the responses in growth, biomass allocation, photosynthesis and stomatal conductance, to changes in light in woody seedlings from the tropical deciduous forest in Mexico, which shows a highly seasonal rain pattern. We studied ten species, which differed by 30-fold in relative growth rate (RGR). We analyzed plant growth in two contrasting light levels during 52 days and two transfers: from high to low (HL) and from low to high (LH) light intensity, and the respective controls in high (HH) and low (LL) light for another 52 days. The photosynthetic capacity (A max) and stomatal conductance were measured at the day of the transfer between light conditions and at the end of the experiment. Species with high RGR showed the largest changes in RGR in response to contrasting light conditions (HH/LL ratio), and species with low RGR showed low responses. The fast-growing species were the most plastic, followed by species with intermediate growth rates, with the slow-growing species being the least plastic. Fast-growing species achieved higher maximum photosynthetic capacities (A max) and stomatal conductance and higher response to light than slow-growing species. Species with high RGR showed a low RGR HH/LH ratio, suggesting a large response of L plants when transfered to H. The RGR of the species were associated with species specific leaf area and with the response in the leaf area, net assimilation rate and leaf weight ratio, suggesting the importance of the leaf area produced and the leaf characteristics rather than root:shoot ratio in determining RGR. Considering that seed germination is expected at the beginning of the rainy period, seedlings of most of the species will experience high-light conditions during its early growth. There are large annual variations in the time required for canopy closure (35–75 days). The influence of these variations may have different effect on the species studied. Species with intermediate growth rate and intermediate response to light changes were less affected by light reduction than fast-growing species. The intermediate-RGR species Caesalpiniaeriostachys is the most abundant and widely distributed species, perhaps this could be in part due to its ability to acclimate to both light increases and decreases. The fast-growing species studied here can be found in open sites in the forest and in areas cleared for pasture growth. These fast-growing species eventually reach the canopy, although this may require several canopy openings during their lives, which implies juvenile shade tolerance. In the tropical deciduous forest juvenile pioneer trees also benefit from the temporary high light available caused by the dry period during the rainy season. The slow-growing species Celaenodendronmexicanum forms small patches of monospecific forest; the adult trees are not completely deciduous, and they retain their old leaves for a long time period before shedding. Thus seedlings of this species may receive lower levels of light, in agreement with its shade tolerance and its lower response to light increases. Received: 14 April 1997 / Accepted: 29 July 1997  相似文献   

3.
4.
Gehring  Catherine A. 《Plant Ecology》2003,167(1):127-139
Light intensity and root colonization by arbuscular mycorrhizal (AM) fungi are considered important factors affecting the performance of rain forest plants, yet few studies have examined how these two factors interact. Whether AM colonization promoted growth or caused shifts in biomass allocation in seedlings of four species of Australian rain forest tree (Flindersia brayleana, Acmena resa, Cryptocarya mackinnoniana and Cryptocarya angulata), grown in a glasshouse under light conditions that mimicked the shaded understory (3% PAR) and small light gaps (10% PAR), was examined. Seedlings were grown in sterilized field soil and either inoculated with AM fungi or provided sterile inoculum. Four major findings emerged. First, in all species, seedlings grown in small gap light intensities were larger than seedlings grown in understory light intensities. Second, when seedling biomass was included as a covariate, variation in light intensity was associated with significant shifts in biomass allocation. In all species, leaf area ratio was lower at 10% PAR than at 3% PAR, while root-to-shoot ratio showed the opposite pattern in one of the four species (C. mackinonniana). Third, although percentage root length colonized by AM fungi was greater at 10% PAR than 3% PAR in all species, this difference could be accounted for by variation in seedling size in all species except C. angulata. Fourth, growth and biomass allocation responses to AM colonization varied with light intensity and plant species. AM colonization promoted growth in both light regimes only in F. brayleana, while it had no effect on growth in C. mackinnoniana and C. angulata in either light regime and promoted growth only under high light in A. resa. AM colonization had no effect on leaf area ratio or root-to-shoot ratio in any of the species, and significantly altered specific root length in only one of the four species (C. mackinnoniana). These findings suggest that rain forest seedlings are highly variable in their growth responses to AM colonization and that some of this variability is related to the light intensity of the environment. Given that seedlings may spend many years in the shaded understory, these differences among species could have important effects on long-term seedling performance and seedling community dynamics.  相似文献   

5.
6.
Acclimation to periodic high‐light stress was studied in tree seedlings from a neotropical forest. Seedlings of several pioneer and late‐succession species were cultivated under simulated tree‐fall gap conditions; they were placed under frames covered with shade cloth with apertures of different widths that permitted defined periods of daily leaf exposure to direct sunlight. During direct sun exposure, all plants exhibited a marked reversible decline in potential photosystem II (PSII) efficiency, determined by means of the ratio of variable to maximum Chl a fluorescence (Fv/Fm). The decline in Fv/Fm under full sunlight was much stronger in late‐succession than in pioneer species. For each gap size, all species exhibited a similar degree of de‐epoxidation of violaxanthin in direct sunlight and similar pool sizes of xanthophyll cycle pigments. Pool sizes increased with increasing gap size. Pioneer plants possessed high levels of β‐carotene that also increased with gap size, whereas α‐carotene decreased. In contrast to late‐succession plants, pioneer plants were capable of adjusting their Chl a/b ratio to a high value in wide gaps. The content of extractable UV‐B‐absorbing compounds was highest in the plants acclimated to large gaps and did not depend on the successional status of the plants. The results demonstrate a better performance of pioneer species under high‐light conditions as compared with late‐succession plants, manifested by reduced photoinhibition of PSII in pioneer species. This was not related to increased pool size and turnover of xanthophyll cycle pigments, nor to higher contents of UV‐B‐absorbing substances. High β‐carotene levels and increased Chl a/b ratios, i.e. reduced size of the Chl a and b binding antennae, may contribute to photoprotection in pioneer species.  相似文献   

7.
Five caesalpinioid legumes, Afzelia africana, Afzelia bella, Anthonotha macrophylla, Cryptosepalum tetraphylum and Paramacrolobium coeruleum, and one Euphorbiaceae species, Uapaca somon, with a considerable range in seed sizes, exhibited different responses to inoculation by four species of ectomycorrhizal (ECM) fungi, Scleroderma dictyosporum, S. verrucosum, Pisolithus sp. and one thelephoroid sp. in greenhouse conditions. Thelephoroid sp. efficiently colonized seedlings of all of the five caesalpinioid legumes except U. somon, but provided no more growth benefit than the other fungi. Thelephoroid sp. and S. dictyosporum colonized seedlings of U. somon poorly, but stimulated plant growth more than the other fungi. The relative mycorrhizal dependency (RMD) values of the caesalpinioid legumes were never higher than 50%, whilst U. somon had RMD values ranging from 84.6 to 88.6%, irrespective of the fungal species. The RMD values were negatively related to seed mass for all plant species. Potassium concentrations in leaves were more closely related than phosphorus to the stimulation of seedling biomass production by the ECM fungi. Our data support the hypothesis that African caesalpinioid legumes and euphorbe tree species with smaller seeds show higher RMD values than those with the larger seeds.  相似文献   

8.
Competitive abilities of Potamogeton pectinatus L. and Potamogeton gramineus L. were estimated using additive series experiments at across a gradient of total daily irradiance ranging from 1.2 to 9.7 mol m−2 day−1. Results for P. gramineus showed that its mean weight per plant was reduced more by the presence of other P. gramineus plants than by changes in the density of P. pectinatus. However, the difference was statistically significant only at the higher light levels examined. In the case of P. pectinatus, P. gramineus exerted a stronger impact on P. pectinatus plants than did other P. pectinatus plants. Coefficients representing interspecific competition were significantly greater than those representing intraspecific competition at higher light levels. These results indicate that P. gramineus was a stronger competitor when light levels were high. They further indicate that at low light levels, there was little evidence that competition was a strong force in determining either species performance. These results support a theory offered by Grime. However, it was possible to predict that P. gramineus would be a stronger competitor based on its light compensation point which was lower than the one for P. pectinatus. This demonstrates the utility of the R* approach proposed by Tilman. Aspects of both approaches may aid ecologists in understanding community structure.  相似文献   

9.
The influence of the cotyledons and apical bud and the root system on the light-induced opening of the hypocotyl hook of etiolated seedlings of Gossypium hirsutum L., Phaseolus vulgaris L., Helianthus annuus L., Ipomoea alla L., Ipomoea sp., Cucumis sativus L., Linum usitatissimum L., Hibiscus esculentus L., and Raphanus sativus L. was studied. Light stimulated the opening of hypocotyl hook in all cases, but the cotyledons and roots had different effects in different plants. Generally, the presence of cotyledons and the remainder of the shoot apical to the hook inhibited light-mediated opening, but in Gossypium the organs stimulated light-mediated opening. Presence of roots either promoted opening, had no effect, or had an effect only when the cotyledons were present. In the dark the adjacent organs had a reduced effect over that shown in the light, but one cultivar of cotton, Acala SJ1, opened the hook in the dark without cotyledons as much as under any condition in the light. The variation between species in hook opening may related to the need of that process for a proper hormonal balance, as affected by light, which must be obtained from adjacent tissues.  相似文献   

10.
Baltzer JL  Thomas SC 《Oecologia》2007,153(2):209-223
A range of traits, including metabolic costs, biomass allocation and seed reserves, may contribute to interspecific variation in the shade tolerance of tree seedlings. In addition, shade tolerance may be affected by differential responses of species to soil resource availability at low light. We used a custom-built whole-plant gas-exchange chamber to quantify instantaneous whole-plant light compensation point (WPLCP) and to parameterize whole-plant daily C gain models for seedlings of eight temperate deciduous tree species. We examined the relationship of WPLCP to growth, biomass allocation and gas-exchange under high and low light and nutrient availabilities and compared it to WPCLP of naturally recruited saplings. For species showing a response, both increased light and nutrient availability resulted in increased WPLCP. However, species’ responses to resource availability did not correspond closely with shade tolerance as has generally been predicted. Variation in WPLCP within species was best predicted by whole-plant dark respiration rates, leaf-level light compensation point and leaf mass per area. Among species, seed size was a strong negative correlate of WPLCP, explaining 66% of the variation. Species with the lowest WPLCP maintained lower growth rates across treatments but greater biomass in the low-light treatment compared with more light-demanding species. These data suggest that a number of traits, in particular metabolic costs and seed size, contribute to WPLCP. However, gas-exchange-based WPLCP was 1.5–3.5 times lower than corresponding growth-based field estimates of WPLCP, suggesting that other factors such as biotic interactions or ontogenetic shifts in whole-plant light requirements may substantially increase species’ WPLCP under natural conditions.  相似文献   

11.

Aims

Our goals were (1) to determine whether tree species diversity affects nutrient (N, P and K) cycling, and (2) to assess whether there is competition for these nutrients between microbial biomass and trees.

Methods

We measured nutrient resorption efficiency by trees, nutrient contents in leaf litterfall, decomposition rates of leaf litter, nutrient turnover in decomposing leaf litter, and plant-available nutrients in the soil in mono-species stands of beech, oak, hornbeam and lime and in mixed-species stands, each consisting of three of these species.

Results

Cycling of nutrients through leaf litter input and decomposition were influenced by the types of tree species and not simply by tree species diversity. Trees and microbial biomass were competing strongly for P, less for K and only marginally for N. Such competition was most pronounced in mono-species stands of beech and oak, which had low nutrient turnover in their slow decomposing leaf litter, and less in mono-species stands of hornbeam and lime, which had high nutrient turnover in their fast decomposing leaf litter.

Conclusions

The low soil P and K availability in beech stands, which limit the growth of beech at Hainich, Germany, were alleviated by mixing beech with hornbeam and lime. These species-specific effects on nutrient cycling and soil nutrient availability can aid forest management in improving productivity and soil fertility.
  相似文献   

12.
The phenology of sprouts (>1 year old, up to 1.5 m in height) and seedlings (<1 year old) of six woody species (four deciduous, one brevi-deciduous, and one evergreen) was examined during the dry season in a tropical deciduous forest of South India. Xylem water potential (x), leaf relative water content (RWC; % turgid weight), and xylem specific conductivity (K S; kg s–1 m–1 MPa–1) of sprouts were measured on two occasions during the dry season. In addition, K S of seedlings (<1 year old) of one deciduous and one evergreen species was determined to allow comparison with sprouts. x of deciduous species was significantly higher at the second sampling date and was accompanied by a significant increase in K S and RWC, while the brevi-deciduous and evergreen species did not show any difference in x. Seedlings of Terminalia crenulata (deciduous) and Ixora parviflora (evergreen) had significantly lower K S compared to sprouts, while seedlings of all four deciduous species shed their leaves much earlier in the dry season than did conspecific sprouts. More favorable water relations of sprouts compared to seedlings during the peak of the dry season may explain the lower rates of die-back and mortality of sprouts observed in dry deciduous forests of India.
This revised version was published online in May 2005 with corrections to Received-/Accepted-dates.  相似文献   

13.
Soil nutrients are heterogeneously distributed in natural systems. While many species respond to this heterogeneity through root system plasticity, little is known about how the magnitude of these responses may vary between native and invasive species. We quantified root morphological and physiological plasticity of co-occurring native and invasive Great Basin species in response to soil nitrogen heterogeneity and determined if trade-offs exist between these foraging responses and species relative growth rate or root system biomass. The nine study species included three perennial bunchgrasses, three perennial forbs, and three invasive perennial forbs. The plants were grown in large pots outdoors. Once a week for 4 weeks equal amounts of 15NH4 15NO3 were distributed in the soil either evenly through the soil profile, in four patches, or in two patches. All species acquired more N in patches compared to when N was applied evenly through the soil profile. None of the species increased root length density in enriched patches compared to control patches but all species increased root N uptake rate in enriched patches. There was a positive relationship between N uptake rate, relative growth rate, and root system biomass. Path analysis indicated that these positive interrelationships among traits could provide one explanation of how invasive forbs were able to capture 2 and 15-fold more N from enriched patches compared to the native grasses and forbs, respectively. Results from this pot study suggest that plant traits related to nutrient capture in heterogeneous soil environments may be positively correlated which could potentially promote size-asymmetric competition belowground and facilitate the spread of invasive species. However, field experiments with plants in different neighbor environments ultimately are needed to determine if these positive relationships among traits influence competitive ability and invader success.  相似文献   

14.
15.
Proliferation of lianas in canopy gaps can restrict tree regeneration in tropical forests through competition. Liana effects may differ between tree species, depending on tree requirements for above- and below-ground resources. We conducted an experiment in a shade house over 12 months to test the effect of light (7 and 27% external irradiance) on the competitive interactions between seedlings of one liana species and three tree species and the contribution of both above- and below-ground competition. Seedlings of the liana Acacia kamerunensis were grown with tree seedlings differing in shade tolerance: Nauclea diderrichii (Pioneer), Khaya anthotheca (Non-Pioneer Light Demander) and Garcinia afzelii (Non-Pioneer Shade Bearer). Trees were grown in four competition treatments with the liana: no competition, root competition, shoot competition and root and shoot competition. Both root and root–shoot competition significantly reduced relative growth rates in all three tree species. After one year, root–shoot competition reduced growth in biomass to 58% of those (all species) grown in no competition. The root competition treatment had a more important contribution in the effect of the liana on tree growth. Tree seedlings did not respond to competition with the liana by altering their patterns of biomass allocation. Although irradiance had a great effect on tree growth and allocation of biomass, the interaction between competition treatments and irradiance was not significant. Nauclea diderrichii, the tree species which responded most to the effects of competition, showed signs of being pot-bound, the stress of which may have augmented the competition effects. The understanding of the interaction of above- and below-ground competition between lianas and trees and its moderation by the light environment is important for a proper appreciation of the influence of lianas on tropical forest regeneration.  相似文献   

16.
17.
The distribution and branching morphologies of four species of columnar cactus species in tropical deciduous woodland in Jalisco, western Mexico, are examined. Two species, Stenocereus marginatus and especially Pachycereus pecten-aboriginum, are taller and extend through the woodland canopy, and only these two species occupy habitats where the woodland vegetation is taller, on N- and NE-facing aspects where incident radiation levels are lowest. Two species, Stenocereus standleyi and Cephalocereus purpusii, are shorter, subcanopy species, and are more restricted to low-angle slopes and slopes with S- to W-aspects, where the woodland vegetation is shorter and more open, with a greater penetration of radiation into the vegetation. Branching morphology is affected by the vegetation cover in all species, but in different ways between the two taller and the two shorter species. Ecological segregation in these four species is achieved apparently by differences among the light regimes of subhabitats correlated to the morphology of the cacti. This contrasts to segregation in Sonoran Desert columnar cactus species, which segregate by different strategies of water uptake and utilization, and in columnar cacti in woodlands in Oaxaca further south in Mexico, where adult individuals are very similar in branching morphology, but the younger individuals differ in this respect and presumably become established in different sorts of light gaps.Nomenclature follows Gibson & Horak (1978).  相似文献   

18.
Mosses and the struggle for light in a nitrogen-polluted world   总被引:6,自引:0,他引:6  
The impact of reduced light conditions as an indirect effect of nitrogen (N) deposition was determined on three mosses in a montane ecosystem, where sedge and grass cover increase due to N enrichment. Additionally, in the greenhouse we established the importance of low light to moss growth as an indirect N deposition effect relative to the direct toxic effects of N. The amount of light reaching the moss layer was strongly and negatively related to graminoid abundance. Mosses showed differing sensitivities to reduced light in the field. Racomitrium lanuginosum biomass was found to be highest under high-light conditions, Polytrichum alpinum at intermediate light levels, whilst that of Dicranum fuscescens was unrelated to light availability. Moreover, Racomitrium biomass decreased with increasing amounts of graminoid litter, whereas the other species were little affected. All three mosses responded differently to the combination of elevated N (20 vs 10 kg N ha–1 year–1) and reduced light (60 and 80% reduction) in the greenhouse. Racomitrium growth was strongly influenced by both light reduction and elevated N, in combination reducing shoot biomass up to 76%. There was a tendency for Dicranum growth to be modestly reduced by elevated N when shaded, causing up to 19% growth reduction. Polytrichum growth was not influenced by elevated N but was reduced up to 40% by shading. We conclude that competition for light, induced by vascular plants, can strongly influence moss performance even in unproductive low biomass ecosystems. The effects of reduced light arising from N pollution can be as important to mosses as direct toxicity from N deposition. Yet, different sensitivities of mosses to both toxic and shading effects of elevated N prevent generalisation and can lead to competitive species replacement within moss communities. This study demonstrates the importance of understanding moss-vascular plant interactions to allow interpretation and prediction of ecosystem responses to anthropogenic drivers such as atmospheric N deposition or climate change.  相似文献   

19.
Gauvin S  Giraldeau LA 《Oecologia》2004,139(1):150-156
Group feeding animals experience a number of competitive foraging costs that may result in a lowered feeding rate. It is important to distinguish between reductions in feeding rates that are caused by reduced food availability and physical interactions among foragers from those caused by the mere presence of foraging companions that may be self-imposed in order to obtain some benefit of group membership. Starlings (Sturnus vulgaris) reduce their feeding rates when in the company of simulated competitors located in an adjacent cage that cannot affect the food availability or interact with the forager. In the present study, we investigate whether the presence of simulated competitors in another species of passerine, nutmeg mannikins (Lonchura punctulata), can result in self-imposed reductions in feeding rates. When feeding in the company of simulated competitors, mannikins spent more non-foraging time near them, fed more slowly, reduced travel times between patches, reduced their scanning time and pecked more slowly. These results provide evidence that simulated competitors induce a reduction in pecking rate: behavioural interference. These self-imposed responses to competitors may have resulted from attempts to remain close to the non-feeding companions. Such self-imposed reductions in feeding rates may be a widespread yet generally unrecognised foraging cost to group feeding individuals.  相似文献   

20.
Summary Root attributes of tree seedlings of seven species from the tropical deciduous forest along the Pacific Coast of Mexico are described using morphometirc root system analysis. Mean relative growth rate, root/shoot ratios, specific root length, root density, mean number of roots tips and root length/leaf area ratio were determined in seedlings grown for 35 days inside growth chambers. All the species had low relative growth rates, low root/shoot ratios and low root densities (<0.5 cm/cm3). The species associated with disturbed habitats, in contrast to the species characteristic of undisturbed areas, presented small seeds, a dichotomous root branching pattern and large specific root length. No relationship was found between seed size and mean relative growth rate among the species studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号