首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cultures of Euglena gracilis (strain Z from French CNRS collection) can be made cadmium resistant if grown in a medium with 5x10-4M cadmium chloride. This resistance is reflected by the appearance of a second exponential growth phase. The development of this resistance was studied at the cellular level by determining the relative content of DNA at different stages of the cell cycle in an asynchronously grown culture. The culture was followed until the second, cadmium resistant, growth phase had reached its stationary state. During the first exponential growth phase, cells were mostly in the late period of DNA synthesis (stage S of the cell cycle), or in the gap preceding mitosis (stage G2 of the cell cycle). In addition, some cells contained high multiples of the normal amount of DNA. In the beginning of the second exponential growth phase, a few cells were again in G1 (the post mitotic stage of the cell cycle preceding DNA synthesis). These G1 cells were predominant at the end of the second growth period. During the second stationary phase the DNA content of the cadmium treated cells was similar to the stationary phase of the control culture. Cells had stopped growing in G1 with an unreplicated genome. The implications of these data are discussed.  相似文献   

2.
The distribution of Chinese hamster cells with respect to the compartments of the cell generation cycle was studied in cultures in the stationary phase of growth in two different media. A measure of the state of depletion of the nutrient medium was formulated by defining a quantity termed the nutritive capacity of the medium. This quantity was used to verify that the cessation of cell proliferation is due to nutrient deficiencies and not to density dependent growth inhibition. Cell cultures in stationary phase were diluted into fresh medium and as growth resumed, mitotic index, cumulative mitotic index, label index and viability were measured as a function of time. The distribution of cells with respect to compartments of the cell generation cycle in stationary phase populations was reconstructed from these data. Stationary phase populations of Chinese hamster cells that retained the capacity for renewed growth when diluted into fresh medium were found to be arrested in the G1 and G2 portions of the cycle; the relative proportion of these cells in G1 increased with time in the stationary phase, but the sequence differs in the two media. In early stationary phase, in the less rich medium, more cells are in G2 than in G1. Also in this medium a fraction of the population was observed to be synthesizing DNA during stationary phase, but this fraction was not stimulated to renewed growth by dilution into fresh medium.  相似文献   

3.
Bacillus pumilus SF214 is a spore forming bacterium, isolated from a marine sample, able to produce a matrix and a orange-red, water soluble pigment. Pigmentation is strictly regulated and high pigment production was observed during the late stationary growth phase in a minimal medium and at growth temperatures lower than the optimum. Only a subpopulation of stationary phase cells produced the pigment, indicating that the stationary culture contains a heterogeneous cell population and that pigment synthesis is a bimodal phenomenon. The fraction of cells producing the pigment varied in the different growth conditions and occured only in cells not devoted to sporulation. Only some of the pigmented cells were also able to produce a matrix. Pigment and matrix production in SF214 appear then as two developmental fates both alternative to sporulation. Since the pigment had an essential role in the cell resistance to oxidative stress conditions, we propose that within the heterogeneous population different survival strategies can be followed by the different cells.  相似文献   

4.
The growth kinetics of Bacillus subtilis KYA 741, an adenine-requiring strain, was investigated under adenine-limiting conditions. The concentration of adenine (the limiting substrate for cell growth) in the culture filtrate remained constant during the stationary phase. In this phase, DNA turnover was active and the DNA content per cell was constant throughout the cultivation period. When cells were transferred to medium without adenine, the cell concentration began to decrease immediately and then reached a constant level due to the supply of adenine from lysing to growing cells. The rates of degradation of cells and DNA were both found to be 0.2 hr?1. An equation for cell growth in this pseudostationary phase was obtained by combining Contois' equation, in which the apparent saturation constant was a function of the cell concentration, with a term for cell degradation. This equation satisfactorily expressed the feature of cell growth and adenine consumption by B. subtilis KYA 741 under adenine-limiting conditions.  相似文献   

5.
Prokhorov LIu 《Tsitologiia》1999,41(10):900-913
Earlier we developed a "stationary phase aging" model and introduced a definition of life span of "stationary phase aging" cell cultures. In this model the cells grow after seeding in flasks without subcultivation and medium change. They reach cell saturation density, stop dividing, gradually degrade ("stationary phase aging") and perish. By the term "culture life span" we designate the time from cell seeding until culture death. We designate the culture as dead when the number of living cells is less than 10 per cent of their number at saturation density of cell culture. The life span of transformed Chinese hamster cells was found to be proportional to the duration of their growth from cell seeding up to saturation density, as well as to the number of cell culture doublings and to be inversely proportional to the velocity of cell culture doubling for the same growth period. Maximum life span of mammals is known to be proportional to pregnancy duration and to the age at puberty. We found that maximal life span of mammals was proportional to the number of cell population doublings and inversely proportional to the velocity of cell population doubling during embryonal period or for the time from zygote to growth termination. The dependences for cell cultures and for mammals are analogous to each other.  相似文献   

6.
The ciliate Tetrahymena pyriformis was grown in a peptone medium without added glucose. The interrelationship between increasing cell density and pH of the growth medium was studied from mid-log to the stationary phase, i.e. from 50,000 to 1,000,000 cells/ml, by continuous registration of the pH of the growth medium. The present findings correlate with the known physiological, biochemical, and structural changes occurring in Tetrahymena as it passes through the culture cycle. The ammonia production of the cells and the buffer capacity of the growth medium were determined throughout the growth cycle. The results revealed that the ammonia excreted by the cells can explain the increase in pH of the medium from 6.8 to about 8.3 normally seen during the culture cycle. Moreover, neither the increased pH nor the raised level of ammonia were found to be the responsible factor for cessation of cell proliferation in the stationary growth phase although these factors may affect cell proliferation in concentrations well beyond the range found in normal cultures.  相似文献   

7.
The effects of glycosaminoglycans (GAGs) on cell growth and differentiation appear to vary with cell type and stage of development. This study describes the types and distribution of GAGs accumulated by normal and malignant human mammary epithelial cells in primary culture during their exponential and stationary phases of growth. Cultures incubated with [3H]glucosamine or [35S]sulfate were separated into medium, extracellular matrix (ECM), and cell fractions. Labelled GAGs were identified by chemical and enzymatic degradations and cellulose acetate electrophoresis. Cultures of normal cells in the exponential phase of growth released the most labelled GAGs into the medium fraction, the majority of which was hyaluronic acid (HA). The increase in labelled GAG accumulation, the increase in sulfated GAGs localized in the ECM fraction correlated with the reduced proliferative activity and increased cell density of cells in stationary cultures. In contrast, cultures of mammary tumour cells had the same labelled GAG profile, regardless of their growth status. Although there was variation among tumours, in general, the majority of the labelled GAGs were secreted into the medium fraction and the predominant GAG was HA. The results are comparable with those obtained from studies on mammary tissue in vivo. Primary cultures of human mammary epithelial cells should be useful for determining how modulations of GAGs affect growth and differentiation of these cells.  相似文献   

8.
Summary Growth hormone production by a rat pituitary tumor cell line (GH1) was measured during lag, exponential, and plateau phases of growth in different culture media. Growth hormone secretion was low during lag and early exponential phase; it increased late in the exponential phase and continued to increase during the plateau phase. This biphasic pattern of growth hormone production was observed in all media and sera utilized. Both the doubling time and growth hormone production were influenced by the choice of media and sera. In addition, the length of time in culture affected the growth fraction with passage level 40 GH1 cells having a 79% growth fraction, whereas the growth fraction of passage level 100 cells was 95%. Using the population doubling time as a criterion for a choice of medium, F-10 medium supplemented with 20% fetal bovine serum consistently yielded the most rapid doubling time (32 hr), whereas Dulbecco's MEM supplemented with 15% horse serum and 2.5% fetal bovine serum yielded the greatest plateau cell density. Growth hormone secretion and the population doubling times were directly related to culture conditions including length of time in culture, choice of tissue culture media, choice of sera, and the phase of cell growth (lag, exponential or plateau).  相似文献   

9.
The induction of DNA synthesis in Datura innoxia Mill. cell cultures was determined by flow cytometry. A large fraction of the total population of cells traversed the cell cycle in synchrony when exposed to fresh medium. One hour after transfer to fresh medium, 37% of the cells were found in the process of DNA synthesis. After 24 hours of culture, 66% of the cells had accumulated in G2 phase, and underwent cell division simultaneously. Only 10% of the cells remained in G0 or G1. Transfer of cells into a medium, 80% (v/v) of which was conditioned by a sister culture for 2 days, was adequate to inhibit this simultaneous traverse of the cell cycle. A large proportion of dividing cells could be arrested at the G0 + G1/S boundary by exposure to 10 millimolar hydroxyurea (HU) for 12 to 24 hours. Inhibition of DNA synthesis by HU was reversible, and when resuspended into fresh culture medium synchronized cells resumed the cell cycle. Consequently, a large fraction of the cell population could be obtained in the G2 phase. However, reversal of G1 arrested cells was not complete and a fraction of cells did not initiate DNA synthesis. Seventy-four percent of the cells simultaneously reached 4C DNA content whereas the frequency of cells which remained in G0 + G1 phase was approximately 17%. Incorporation of radioactive precursors into DNA and proteins identified a population of nondividing cells which represents the fraction of cells in G0. The frequency of cells entering G0 was 11% at each generation. Our results indicate that almost 100% of the population of dividing cells synchronously traversed the cell cycle following suspension in fresh medium.  相似文献   

10.
Stationary cells of Tetrahymena were reactivated to exponential growth phase by transfer to fresh medium. The sequence of resuming cell cycle events was analysed by scoring the division index, the labelling index for macro- and micronuclei and the increase in cell number. By long-term labelling it was found that all cells replicate in stationary phase cultures. They also divide eventually. Upon transfer to fresh medium a small fraction of cells (about 3%) divide immediately, whereas the rest divide 3 h later after having replicated their macronuclear DNA. The kinetics of entry into the S phase indicates that these cells have a lag period of about 2 h before they resume progress through the cell cycle. It takes more than 1 h until all cells have begun replication. These data show that in stationary cultures all cells proceed through the events of the cell cycle. The cell cycle phases are extended differentially, G1 taking the largest part. During G2 cells pass very slowly through a certain stage close to division. Under the present conditions there is no indication for cells being in a resting state that is not part of the cell cycle, from which they can be restimulated and which has been called the G0 state. The criteria to demonstrate a resting state of this nature are discussed.  相似文献   

11.
It was found that the growth of Rhodococcus rhodochrous cells in modified Saton's medium strongly depends on the rate of culture agitation in the flask: an agitation at 250 rpm in flasks with baffles stops cell multiplication, whereas slight agitation leads to pronounced culture growth. The growth retardation phenomenon was reversible and did not manifest itself in exponential-phase cultures or when the cells were grown in a rich medium; furthermore, it was not connected with the degree of culture aeration. When agitated at a moderate rate, the bacterial cells formed aggregates in the lag phase, which broke up into single cells in the exponential phase. The inhibitory effect of vigorous agitation was removed by the addition to the medium of the supernatant (SN) of a log-phase culture grown in the same medium with moderate agitation. Vigorous agitation is thought to interfere with the cell contacts, whose establishment is necessary for the development of an R. rhodochrous culture in a poor medium, which occurs in the form of (micro) cryptic growth. When grown in modified Saton's medium, R. rhodochrous cells were capable of transition, in the prolonged stationary phase, to a resting and transiently nonculturable state. Such cells could be resuscitated by incubation in a liquid medium with the addition of the supernatant or the Rpf secreted protein. The formation of transiently nonculturable cells was only possible under the conditions of a considerable agitation rate (250-300 rpm), which prevented secondary (cryptic) growth of the culture. This circumstance indicates the importance of intercellular contacts not only for the initiation of growth but also for the transition of the bacteria to a dormant state.  相似文献   

12.
Saccharomyces cerevisiae has been employed as a whole cell catalyst for a number of asymmetric transformations. This work explores the ability of this microorganism to carry out the asymmetric aldol condensation between 4-nitrobenzaldehyde and acetone. For this purpose, lyophilized cells of the FY86 laboratory strain from stationary phase cultures were employed. This reaction shows stereoselectivity, and its progress is affected by the water concentration in the medium, temperature and the growth stage of the yeast culture. Cell lysis experiments indicate that activity responsible for this biotransformation is located in the soluble fraction.  相似文献   

13.
A comparative analysis of the cellular and extracellular lipids of Acinetobacter species HO1-N indicated basic physiological differences in hexadecane-grown cells. The cellular lipids obtained from hexadecane-grown cells were characterized by 3- and 18-fold increases in the phospholipid fraction and the mono- and diglyceride fraction, respectively, over that obtained from nutrient broth-yeast extract-grown cells. The cellular-associated pools of hexadecane were shown to comprise approximately 8% of the dry cell weight of hexadecane-grown cells. The extracellular lipids obtained from the culture broths of hexadecane-grown cells were comprised of triglyceride, mono- and diglyceride, free fatty acid, and wax ester. These lipids were either absent or present in minor concentrations in the culture broths of nutrient broth-yeast extract-grown cells. The exponential growth of Acinetobacter sp. on hexadecane was characterized by the significant accumulation of free fatty acid, monoglyceride, and diglyceride in the culture medium. Wax ester was shown to represent a minor portion of the extracellular lipids during the exponential growth phase, appearing in significant proportion only after the culture had entered the stationary phase of growth.  相似文献   

14.
Hyaluronic acid synthesis in cultured cells usually occurs during the growth phase. The relation between hyaluronic acid synthetase activity and cell proliferation is studied. The synthetase activity in rat fibroblasts is high during the growth phase, but low in the stationary phase. When the old medium of stationary cultures is renewed with fresh medium containing 20% calf serum, DNA synthesis occurs synchronously between 12 and 20 hours, followed by cell division. Under these conditions, the hyaluronic acid synthetase activity is significantly induced within two hours, reaching a maximum level at 5–8 hours, and then decreases gradually. This induction of the synthetase, which shows a high turnover rate, requires continued synthesis of both RNA and protein. Furthermore, the induction of both DNA and hyaluronic acid synthesis is found to be caused by calf serum added in the medium. However, dialysis and ultrafiltration of the serum permit us to concentrate an active fraction with a high molecular weight, which induces the synthetase activity, but not DNA synthesis.  相似文献   

15.
The recently discovered hyperthermophilic and radioresistant archaeon Thermococcus gammatolerans is of great interest to compare and contrast the impact of its physiology on radioresistance and its ability to repair damaged chromosomes after exposure to gamma irradiation with radioresistant bacteria. We showed that, in contrast to other organisms, cell survival was not modified by the cellular growth phase under optimal growth conditions but nutrient-limited conditions did affect the T. gammatolerans radioresistance. We determined the first kinetics of damaged DNA recovery in an archaeon after exposure to massive doses of gamma irradiation and compared the efficiency of chromosomal DNA repair according to the cellular growth phase, nutrient availability and culture conditions. Chromosomal DNA repair kinetics showed that stationary phase cells reconstitute disrupted chromosomes more rapidly than exponential phase cells. Our data also revealed that this radioresistant archaeon was proficient to reconstitute shattered chromosomes either slowly or rapidly without any loss of viability. These results suggest that rapid DNA repair is not required for the extreme radioresistance of T. gammatolerans. Angels Tapias and Christophe Leplat contributed equally to this work.  相似文献   

16.
Recovery from nutrient starvation by a marine Vibrio sp   总被引:4,自引:0,他引:4  
A marine psychrophilic Vibrio sp., Ant-300, recovered from starvation after the addition of 1 volume of complete nutrient medium to 9 volumes of starvation menstruum. Turbidity (measured by optical density), viable cell counts, cell size (measured from electron micrographs), and cellular concentrations of protein, DNA, and RNA were monitored with recovery time. The usual growth curve of bacterial cultures was observed. On a per viable cell basis, protein, DNA, and RNA increased to maximum values just before cell division and then returned to close to the initial starved-cell value during the stationary phase. Cells under complete starvation conditions or missing only one nutrient in the stationary phase responded with cell division resulting in many smaller cells. The length of the lag phase during recovery was directly proportional to the length of the prior starvation period, even when identical numbers of cells were used for recovery. Cells appeared to pass more deeply into dormancy with starvation time.  相似文献   

17.
Flow cytometry provides a rapid, sensitive and accurate analytical means to monitor hybridoma cell cultures. The use of flow cytometry has enabled us to study the changes in DNA, RNA, protein, IgG, mitochondrial activity and cell size that take place during the growth cycle of batch culture. The temporal changes in the levels of these analytes and their heterogeneity have been related to the growth/death kinetics. The maximum proportion of S-cells was reached early in the growth phase while a population of low fluorescence cells with lower polidy than G1, dead cells and fragmented nuclei emerged during the death phase. Supplementation with amino acids during the exponential phase prolonged the growth cycle by enhancing cell proliferation. The fraction of S/G2 cells was much reduced by a reduction in serum concentration but was maintained during the prolonged non-proliferating "stationary" phase. The magnitude of Rhodamine 123 staining showed a consistent and general decrease during late exponential and decline phases. This trend was accompanied by an increase in the fraction of the Propidium Iodide-stained population which reflected the deteriorating metabolic and membrane integrity. Decrease in mean fluorescence intensity for DNA, RNA, protein and intracellular IgG was noted at the decline phase. Intracellular immunofluorescence was a more reliable indicator of antibody productivity than surface immunofluorescence.  相似文献   

18.
Recovery from nutrient starvation by a marine Vibrio sp.   总被引:1,自引:10,他引:1       下载免费PDF全文
P S Amy  C Pauling    R Y Morita 《Applied microbiology》1983,45(5):1685-1690
A marine psychrophilic Vibrio sp., Ant-300, recovered from starvation after the addition of 1 volume of complete nutrient medium to 9 volumes of starvation menstruum. Turbidity (measured by optical density), viable cell counts, cell size (measured from electron micrographs), and cellular concentrations of protein, DNA, and RNA were monitored with recovery time. The usual growth curve of bacterial cultures was observed. On a per viable cell basis, protein, DNA, and RNA increased to maximum values just before cell division and then returned to close to the initial starved-cell value during the stationary phase. Cells under complete starvation conditions or missing only one nutrient in the stationary phase responded with cell division resulting in many smaller cells. The length of the lag phase during recovery was directly proportional to the length of the prior starvation period, even when identical numbers of cells were used for recovery. Cells appeared to pass more deeply into dormancy with starvation time.  相似文献   

19.
A cell suspension culture of Taxus media was established from a stable callus line of this species. The growth rate and production of paclitaxel and baccatin III of this cell suspension were significantly increased during the shake flask culture in its respective optimum media for cell growth and product formation, which were selected after assaying 24 different culture media. The highest yields of paclitaxel (2.09 mg L(-1)) and baccatin III (2.56 mg L(-1)) in the production medium rose (factors of 7.0 and 3.0, respectively) in the presence of methyljasmonate (220 microg g(-1) FW). When the elicitor was added together with mevalonate (0.38 mM) and N-benzoylglycine (0.2 mM), the increase in the yields of paclitaxel and baccatin III was even higher (factors of 8.3 and 4.0, respectively). Thereafter, a two-stage culture for cell suspension was carried out using a 5-l stirred bioreactor running for 36 days, the first stage being in the cell growth medium until cells entered their stationary growth phase (12 days) and the second stage being in the production medium supplemented with the elicitor and two putative precursors in the concentrations indicated above. Under these conditions, 21.12 mg L(-1) of paclitaxel and 56.03 mg L(-1) of baccatin III were obtained after 8 days of culture in the production medium.  相似文献   

20.
SYNOPSIS. Culture forms of Trypanosoma lewisi grown at 27 C in a diphasic blood agar medium resemble in structure the stage found in the invertebrate host. Cultures inoculated with approximately 1 × 106 trypanosomes/ml attain maximum populations of 2–7 × 107 organisms/ml after 5–6 days of incubation. The stationary phase persists 6–15 days. The decline of the population is of relatively long duration with approximately 1 × 106 viable organisms/ml present after 90 days. Variations in growth were attributed to the preparation of defibrinated heated rabbit blood incorporated into the culture medium. With inocula of 3.0 × 105 trypanosomes/ml there was a lag in growth not observed with larger inocula. Trypanosomes incubated at elevated temperatures had altered growth curves compared to organisms at 27 C. Agitation of cultures did not affect the growth or stationary phases, but hastened the population decline. Heated and unheated 5% (v/v) normal rat serum incorporated in the liquid phase of the medium altered the growth of the organisms. Heated serum caused a decrease in the population and an extended lag phase. The effects on growth were more marked with unheated serum suggesting that both heat-stable and labile components affect growth. Antisera from rats injected with live culture forms included in the liquid phase inhibited, while antisera from rats 24 days after infection with the blood stream forms had no effect on the growth of the culture forms. Antisera from rabbits immunized with sonicates of culture forms also altered the growth of the organisms in culture. Rabbit antisera prepared by immunization with sonicates of dividing and non-dividing blood stream forms had no effect on the in vitro growth. Antisera from animals immunized with rat blood and culture medium were also without effect. The immunologic implications of the data are considered and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号