共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: To investigate the perturbation of ubiquinone biosynthesis by a hypocholesterolemic drug, 3β-(2-di-ethylaminoethoxy)androst-5-en-17-one hydrochloride (U18666A), we measured the incorporation of radioactive mevalonate, methionine, tyrosine, and 4-hydroxybenzoic acid into ubiquinone in glioblastoma cells. These four precursors unanimously showed that ubiquinone biosynthesis was not significantly altered by U18666A, which blocked cholesterol biosynthesis at steps beyond mevalonate formation. The fluctuation of the endogenous mevalonate level had little effect on ubiquinone biosynthesis, implying the relative stability of cellular ubiquinone biosynthesis. Furthermore, exogenously added mevalonate did not have an appreciable effect on ubiquinone biosynthesis. The major ubiquinone produced in rat glioblastoma cells was identified as ubiquinone-9. The mevalonate-derived products accumulated in the U18666A-treated cells differed significantly from those reported in a broken cell study, suggesting the existence of delicate mechanisms regulating the formation of cholesterol intermediates. 相似文献
2.
Effect of Serum Lipoproteins on Growth and Sterol Synthesis in Cultured Rat Brain Glial Cells 总被引:1,自引:0,他引:1
Cells dissociated from brains of 1-day-old rats were cultured in medium containing either lipoprotein-deficient serum (LPDS) or LPDS plus various lipoprotein fractions. Increases in number of cells and in DNA content served as a measure of cell growth. Cholesterol synthesis was measured from the incorporation of [14C]acetate into total nonsaponifiable lipids and digitonin-precipitable sterols, and from the activity of the enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase. The data indicated that cholesterol biosynthesis from acetate was reduced in cells cultured in medium containing either LPDS plus low-density lipoproteins (LDL), high-density lipoproteins (HDL), or total lipoproteins (LP) and that this reduction was accompanied by a reduction in the activity of the HMG CoA reductase and an increase in the esterified sterol content. The reduction in cholesterol synthesis from acetate was maximal in cells cultured in the presence of HDL, whereas the maximal reduction in the activity of HMG CoA reductase occurred in cells cultured in the presence of LP. The presence of LDL or LP in the culture medium enhanced the cell growth but the presence of HDL did not. Esterified sterol content was highest in cells cultured in the medium containing LPDS plus LP and was not detected in cells cultured in LPDS medium. It is inferred from these data that rat brain glial cells in culture are able to utilize cholesterol in lipoproteins, that the presence of LDL in the medium enhances cell growth, and that reduced cholesterol synthesis in the presence of lipoproteins may occur at the HMG CoA reductase step as well as at some other step(s). 相似文献
3.
Abstract: The relation of cellular cholesterol content to a biochemical expression of astrocytic differentiation was investigated in cultured C-6 glial cells. The astrocytic marker, glutamine synthetase, was studied. Cellular sterol content was perturbed with compactin, a specific inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase and, thereby, cholesterol biosynthesis. Depletion of cellular sterol resulted in 72 h in a more than twofold increase in glutamine synthetase activity. Production of various degrees of sterol depletion with different concentrations of compactin demonstrated a striking inverse relationship between glutamine synthetase activity and the cellular sterol/phospholipid molar ratio. That the effect of compactin, in fact, is mediated by depletion of sterol was shown further by prevention of the compactin-induced increase in synthetase activity by simultaneous addition of exogenous cholesterol. Moreover, addition of cholesterol alone to the culture medium led to both a decrease in glutamine synthetase activity and an increase in the sterol/phospholipid molar ratio. The possibility that the compactin-induced increase in glutamine synthetase activity is caused by an increase in synthesis of the enzyme was suggested by prevention of the increase by cycloheximide. The data suggest that astrocytic differentiation is stimulated by a decrease in cellular sterol content. When considered with our previous observation that oli-godendroglial differentiation is inhibited by such a decrease, the findings suggest that cellular sterol content is a critical determinant of the direction of glial differentiation, i.e., whether along astrocytic or oligodendroglial lines. 相似文献
4.
Sterol composition and growth of transgenic tobacco plants expressing type-1 and type-2 sterol methyltransferases 总被引:3,自引:0,他引:3
Transgenic tobacco (Nicotiana tabacum L.) plants with altered sterol composition were generated by transformation with plant cDNAs encoding type-1 and type-2 sterol
methyltransferases (SMTs; EC 2.1.1.41). For both SMT1 and SMT2 transformants, the transformation was associated with a reduction
in the level of cholesterol, a non-alkylated sterol. In SMT1 transformants a corresponding increase of alkylated sterols,
mainly 24-methyl cholesterol, was observed. On the other hand, in SMT2 transformants the level of 24-methyl cholesterol was
reduced, whereas the level of sitosterol was raised. No appreciable alteration of total sterol content was observed for either
genotype. The general phenotype of transformants was similar to that of controls, although SMT2 transformants displayed a
reduced height at anthesis. The results show that plant sterol composition can be altered by transformation with an SMT1 cDNA
without adverse effects on growth and development, and provide evidence, in planta, that SMT1 acts at the initial step in
sterol alkylation.
Received: 27 June 2000 / Accepted: 22 July 2000 相似文献
5.
Sparrow Susan M. Carter Jodi M. Ridgway Neale D. Cook Harold W. Byers David M. 《Neurochemical research》1999,24(1):69-78
To determine if neurochemical function might be impaired in cell models with altered cholesterol balance, we studied the effects of U18666A (3--[(2-diethyl-amino)ethoxy]androst-5-en-17-one) on intracellular cholesterol metabolism in three human neuroblastoma cell lines (SK-N-SH, SK-N-MC, and SH-SY5Y). U18666A (0.2 g/ml) completely inhibited low density lipoprotein (LDL)-stimulated cholesterol esterification in SK-N-SH cells, while cholesterol esterification stimulated by 25-hydroxycholesterol or bacterial sphingomyelinase was unaffected or partially inhibited, respectively. U18666A also blocked LDL-stimulated downregulation of LDL receptor and caused lysosomal accumulation of cholesterol as measured by filipin staining. U18666A treatment for 18 h resulted in 70% inhibition of K+-evoked norepinephrine release in phorbol esterdifferentiated SH-SY5Y cells, while release stimulated by the calcium ionophore A23187 was only slightly affected. These results suggest that U18666A may preferentially block a voltage-regulated Ca2+ channel involved in norepinephrine release and that alterations in neurotransmitter secretion might be a feature of disorders such as Niemann-Pick Type C, in which intracellular cholesterol transport and distribution are impaired. 相似文献
6.
The uptake of glutamate in rat glioma C-6 cells and cultured astrocytes derived from rat cerebral hemispheres was found to be mediated by a Na(+)-dependent and a Na(+)-independent system. The Na(+)-dependent system was inhibited by aspartate and was consistent with the commonly occurring system designated system X-AG. The Na(+)-independent system was inhibited by cystine and was consistent with system x-c described in various types of cells in the periphery. It was also found that quisqualate selectively and competitively interfered with the Na(+)-independent glutamate uptake. In C-6 cells, the glutamate uptake via systems X-AG and x-c accounted for approximately 35% and 55% of the total uptake, respectively, at 0.05 mM glutamate. In cultured astrocytes, the glutamate uptake via system X-AG was very potent, whereas the uptake via system xc- was relatively weak and its contribution to the total uptake of glutamate seemed almost negligible. However, in both C-6 cells and astrocytes, system xc- was necessary for the uptake of cystine, another substrate of system xc-. Cystine in the culture medium was an essential precursor of glutathione, and the inhibition of the cystine uptake by excess glutamate as a competitor led to a severe deficiency in glutathione, followed by cell degeneration. 相似文献
7.
Narayan R. Bhat Eric G. Brunngraber Bertrand Delpech 《Journal of neurochemistry》1985,44(6):1822-1824
Hyaluronectin, a brain glycoprotein that has been localized to the nodes of Ranvier in vivo and to oligodendrocytes in primary cultures of neonatal rat brain cells, was shown by using an unlabeled immunoperoxidase method to be present in C-6 glial cells grown to high density. The density-dependent expression of this glycoprotein is in accordance with the known properties of the glial stem cells, i.e., induction of differentiated properties such as 2',3'-cyclic nucleotide-3'-phosphohydrolase, glutamine synthetase, S-100 protein, and glial fibrillary acidic protein. 相似文献
8.
Desmosterolosis is a rare, autosomal recessive, human disease characterized by multiple congenital anomalies in conjunction with grossly elevated levels of desmosterol and markedly reduced levels of cholesterol in all bodily tissues. Herein, we evaluated retinal sterol composition, histology, and electrophysiological function in an animal model that exhibited the biochemical features of desmosterolosis, produced by treating pregnant rats and their progeny with U18666A, an inhibitor of desmosterol reductase. Treated rats had cataracts, were substantially smaller, and had markedly high levels of desmosterol and profoundly low levels of cholesterol in their retinas and other tissues compared to age-matched controls. However, their retinas were histologically normal and electrophysiologically functional. These results suggest that desmosterol may be able to replace cholesterol in the retina, both structurally and functionally. These findings are discussed in the context of sterol synergism. 相似文献
9.
Tsutomu Ikeda Takashi Matsumoto Kunio Kato Masao Noguchi 《Bioscience, biotechnology, and biochemistry》2013,77(11):2297-2298
Callus tissues were induced from stem and root segments of Rauwolfia serpentina. Growth and alkaloid production of the callus tissues were examined under various culture conditions. The growth was strikingly promoted in the presence of 2,4-D (0.5~1 ppm), kinetin (0.2~0.5 ppm) and yeast extract (0.1~0.2%). At favourable conditions, the growth value in 4 weeks’ culture was ca. 40 (F.W.), and ca. 25 (D.W.) for stem callus tissues, and ca. 15 (F.W.), and ca. 8 (D.W.) for root callus tissues. Stem and root callus tissues produced ajmaline and some other unidentified Rauwolfia alkaloids. The ajmaline content in root callus tissues was 10~20mg % and in stem callus tissues was 1~10mg %. The ajmaline production was strikingly reduced when 2,4-D concentration increased, or kinetin was omitted in the culture medium. Phytosterols including stigmasterol, β-sitosterol or cholesterol were also produced. 相似文献
10.
Robert J. Grasso Nikki J. Holbrook Steven F. Wodzinski 《Journal of neurochemistry》1981,37(2):515-517
Abstract: Dexamethasone suppresses C6 glial cell proliferation in vitro. This growth-inhibitory response is accompanied by elevated amounts of acid-insoluble protein in the steroid-treated cells relative to controls. These results provide additional evidence that the glucocorticoid acts to arrest C6 cell proliferation in G2. 相似文献
11.
Tomiyama Y Waguri S Kanamori S Kametaka S Wakasugi M Shibata M Ebisu S Uchiyama Y 《Cell and tissue research》2004,317(3):253-264
It has been shown that the treatment with 3-[2-(diethylamino)ethoxy] androst-5-en-17-one (U18666A) causes the accumulation of cholesterol and the cation-independent mannose 6-phosphate receptor (CIMPR) in late endosomal/lysosomal compartments in BHK cells. The present study reports on a study of the effect of U18666A on CIMPR distribution in more detail in HeLa cells. When cells were treated with U18666A for 20 h, the intense perinuclear signal for CIMPR corresponding to the trans-Golgi network (TGN) disappeared and lamp1-negative punctate signals, scattered in the perinuclear region were detected. CIMPR then began to accumulate in lamp1-positive compartments 48 h after addition of the drug. Double immunofluorescence microscopy showed that U18666A-induced mannose 6-phosphate receptor-containing compartments (U-MPRCs), which were formed in the early phase of the redistribution, contained no marker for the TGN, late endosomes or lysosomes. Approximately half of the structures contained transferrin that had been internalized for 20 min, and cathepsin D, the majority of which appeared to be its precursor form. Immunoelectron-microscopic analysis revealed that U-MPRCs are composed of multivesicular bodies, irregularly shaped structures, and vesicular structures adjacent to the multivesicular bodies. These results suggest that U18666A treatment primarily suppresses the CIMPR transport pathways to late endosomes and from transferrin-containing endosomes, both of which may be dependent on cholesterol function.This work was supported by grants from Japan Ministry of Education, Culture, Sports, Science, and Technology. 相似文献
12.
Obligatory Relationship Between the Sterol Biosynthetic Pathway and DNA Synthesis and Cellular Proliferation in Glial Primary Cultures 总被引:2,自引:4,他引:2
Primary cultures of newborn rat brain, which are composed predominantly of astroglia, were used to examine the relationship between the sterol biosynthetic pathway and DNA synthesis and cellular proliferation. Reduction of the fetal calf serum content of the culture medium from 10 to 0.1% (vol/vol) for an interval of 48 h between days 4 and 6 in culture resulted in a quiescent state characterized by inhibition of DNA synthesis and cellular proliferation. When 10% fetal calf serum was returned to the medium for these quiescent cells, within 24 h DNA synthesis increased markedly. Preceding the rise in DNA synthesis was an increase in sterol synthesis, which occurred within 12 h of the return of the quiescent cells to the 10% fetal calf serum. Exposure of the quiescent cells to mevinolin, a specific inhibitor of sterol synthesis at the 3-hydroxy-3-methylglutaryl-CoA reductase step, completely inhibited the increase in DNA synthesis that followed serum repletion. The increase in total protein synthesis that followed serum repletion was not similarly inhibited by mevinolin. When mevinolin was removed after causing the 24-h inhibition of DNA synthesis, the cultured cells underwent active DNA synthesis and proliferation. Thus, inhibition of the sterol biosynthetic pathway resulted in a specific and reversible inhibition of DNA synthesis and glial proliferation in developing glial cells. These findings establish a valuable system for the examination of glial proliferation, i.e., primary glial cultures subjected to serum depletion and subsequent repletion. Moreover, the data establish an obligatory relationship between the sterol biosynthetic pathway and DNA synthesis and cellular proliferation in developing glia. 相似文献
13.
Inhibitors of Urokinase and Thrombin in Cultured Neural Cells 总被引:1,自引:1,他引:1
Steven L. Wagner Alice L. Lau Ann Nguyen Jun Mimuro David J. Loskutoff Paul J. Isackson† Dennis D. Cunningham 《Journal of neurochemistry》1991,56(1):234-242
Recent studies have suggested important roles for certain proteases and protease inhibitors in the growth and development of the CNS. In the present studies, inhibitors of urokinase or thrombin in cultured neural cells and serum-free medium from the cells were identified by screening for components that formed sodium dodecyl sulfate-stable complexes with 125I-urokinase or 125I-thrombin. Rinsed glioblastoma possessed two components that complexed 125I-urokinase. One was type 1 plasminogen activator inhibitor (PAI-1), because the 125I-urokinase-containing complexes were immunoprecipitated with anti-PAI-1 antibodies. The other component formed complexes with 125I-urokinase that were not recognized by antibodies to PAI-1 or protease nexin-1 (PN-1). Its identity is unknown. In addition to these cell-bound components, the glioblastoma cells also secreted two inhibitors that formed complexes with 125I-urokinase; one was PAI-1, and the other was PN-1. The secreted PN-1 also formed complexes with 125I-thrombin. It was the only thrombin inhibitor detected in these studies. Human neuroblastoma cells did not contain components that formed detectable complexes with either 125I-urokinase or 125I-thrombin. However, human neuroblastoma cells did contain very low levels of PN-1 mRNA and PN-1 protein. Added PN-1 bound to the surface of both glioblastoma and neuroblastoma cells. This interaction accelerated the inhibition of thrombin by PN-1 and blocked the ability of PN-1 to form complexes with 125I-urokinase. Thus, cell-bound PN-1 was a specific thrombin inhibitor.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
14.
Glial Fibrillary Acidic Protein: Norepinephrine Stimulated Phosphorylation in Intact C-6 Glioma Cells 总被引:2,自引:1,他引:2
Abstract: Coelectrophoresis in two-dimensional gels of rat glial fibrillary acidic protein (GFA) and 32P-labeled whole cell extracts of rat C-6 glioma cells showed that the GFA migrated in close proximity to a previously noted phosphoprotein, 50K-6.1, of these cells. GFA electrophoresed as a 50K polypeptide with at least four charge variants, the most acidic of which coelectrophoresed with 50K-6.1. Exposure of the C-6 cultures to dibutyryl cyclic AMP (dbcAMP) for 48 h increased the relative abundance of the endogenous polypeptide associated with 50K-6.1 by threefold, consistent with the hypothesis that 50K-6.1 was GFA. Norepinephrine stimulated 50K-6.1 phosphorylation 3.2-fold in dbcAMP-induced cultures. Peptide mapping with V8 protease and subtilisin was used to test the hypothesis that GFA and 50K-6.1 were identical polypeptides. With V8 protease, the peptides generated from the [35S]methionine labeled putative GFA spot of the C-6 cells were indistinguishable from the stained bands derived from authentic GFA in mixed samples of the two proteins. Likewise, the 35S-labeled acidic satellite to the putative GFA spot also yielded a peptide map that matched that of the authentic GFA. 32P-labeled peptides derived from the 50K-6.1 protein were a subset of those from authentic GFA. With three subtilisin concentrations, 32P-labeled 50K-6.1 was degraded to peptides which were again a subset of the stained GFA peptides. A cytoskeletal fraction from 32P-labeled C-6 cells contained a 50K phosphoprotein. Pep-, tide mapping with V8 protease produced a 32P-peptide pattern which was a subset of that from authentic GFA. The pattern closely resembled the 32P-peptide pattern for the 50K-6.1 protein from 2-dimensional gels of whole cell extract. It was concluded that the protein 50K-6.1 is a phosphorylated form of GFA and that GFA is a phosphoprotein whose phosphòrylation is stimulated by norepinephrine in C-6 glioma cells. 相似文献
15.
Abstract: The function of plasma membrane as control point of glucose metabolism has been studied in confluent monolayer of C1300 neuroblastoma (N2A) and glioma (C6) cells. In neuroblastoma, steady state intracellular glucose concentration reached the extracellular levels, while intracellular contents in C6 glioma cells remained very low. In C6 glial cells the amount of glycogen as source of energy was much higher than that found in C1300 neuroblastoma cells. Influx rates of D-glucose in C6 glioma cells were only half those found in neuroblastoma cells. During the influx period (0-40 s) the transport of glucose in these cells did not exceed the phosphorylation rate, whereas a steady, time-dependent increase in glucose content was observed in neuroblastoma cells. While glucose uptake in neuroblastoma cells seems to be regulated at the level of phosphorylating enzymes, the control point in C6 glioma is believed to be membrane transport. 相似文献
16.
Kanda Takashi Ariga Toshio Yamawaki Masanaga Yoshino Hiide Gu Xin-Bin Yu Robert K. 《Neurochemical research》1997,22(4):463-466
Bovine brain microvascular endothelial cells (BMECs) express GM3 (NeuAc) and GM3 (NeuGc) as the major gangliosides, and GM1, GD1a, GD1b, GT1b as well as sialosylparagloboside and sialosyllactosaminylparagloboside as the minor species. To investigate the metabolic basis of this ganglioside pattern, the activities of eight glycosyltransferases (GM3-, GD1a-, GD3-, LM1-, GM2 (NeuAc)-, GM2 (NeuGc)-, LacCer-, and GM1-synthases) in cultured BMECs were studied. It was found that BMECs possessed high activities of GM3- and GD1a-synthases, and low activities of GM2-, GM1-, and GD3-synthases. Thus, the present study provides evidence that endothelial cells are capable of synthesizing gangliosides in situ and that the high content of GM3 in BMEC is closely associated with high activities of GM3-synthase and low activities of GM2-, GM1-, and GD3-synthases. 相似文献
17.
Horst Will Alexander Benenson Ginette Devilliers Paul Mandel 《Journal of neurochemistry》1982,39(4):924-932
Abstract: Plasma membranes were isolated from C6 glioblastoma cells by two methods. In the first method cells were treated with concanavalin A and lysed in hypotonic medium. After partial separation of plasma membranes from other cell material, the lectin was displaced with a-methyl-D-mannoside. In the second method untreated cells or cells iodinated in a lactoperoxidase-catalyzed reaction were homogenized in isotonic medium. Membrane fractions obtaincd by either homogenization procedure were further purified by rate zonal and equilibrium centrifugations into linear density gradients. Disruption of the glioblastoma cell membrane gives rise to heterogeneous assemblies of mem- brane fragments. Two populations of plasma membranes were isolated from untreated and from iodinated cells: a "lighter")membrane fraction characterized by relatively lower sedimentation velocity and buoyant density, and a "heavier" membrane fraction of relatively faster sedimentation velocity and higher buoyant density. Both fractions showed electrophoretic patterns similar to those of 125 I-labeled cell surface proteins. Their specific (Na+ + K+ )-ATPase activity was seven- to eightfold the homogenate activity (recovery, 13.1%). Both fractions were, however, still contaminated by smooth endo- plasmic reticulum, as judged from the activity 0: NADPH-dependent cytochrome c reductase (recovery, 2.4%). It is suggested that plasma membrane fragments present in the two fractions might differ in the organization of their structures, e.g., membrane vesicle intactness and membrane orientation. 相似文献
18.
19.
目的:明确LRIG2蛋白在人催乳素腺瘤细胞中的表达与定位。方法:采用免疫细胞化学方法检测LRIG2蛋白在人催乳素腺瘤原代细胞中表达情况,人胶质瘤细胞系U87细胞设为阳性对照。结果:LRIG2蛋白在原代培养的人催乳素腺瘤细胞中高表达(86.6±2.15)%,与其在U87细胞中表达率无明显统计学差异;同时免疫细胞化学结果提示LRIG2蛋白在人催乳素腺瘤细胞中定位于胞浆,也与其在U87细胞中表达一致。结论:LRIG2蛋白在人催乳素腺瘤细胞中高表达,定位于胞浆,提示其可能在垂体腺瘤发生、发展过程中发挥作用,为进一步研究垂体腺瘤发生机制奠定基础。 相似文献
20.
Abstract: The relation of cellular cholesterol content to a biochemical expression of oligodendroglial differentiation was studied in cultured C-6 glial cells. Induction of the oligodendroglial marker enzyme 2′: 3′-cyclic nucleotide 3′-phosphohydrolase (CNP) was determined after alteration of the sterol content of cellular membranes by exposure to compactin, a specific inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase and cholesterol synthesis. The sterol content and as a consequence, the sterol/phospholipid molar ratio of C-6 glial cells were decreased by treating the cells, in 10% lipoprotein-poor serum, with various concentrations of compactin for 24 h. The degrees of sterol depletion thus produced were maintained for 48 h after removal of the compactin if the cells were maintained in serum-free medium, the culture conditions necessary for induction of CNP in untreated cells. Forty-eight hours after removal of serum, no induction of CNP occurred in cells previously treated with 0.5 μg/ml of compactin, whereas untreated cells exhibited a three- to fourfold increase in CNP activity. Intermediate degrees of sterol depletion resulted in intermediate degrees of inhibition of the CNP induction. Moreover, the morphological expressions of glial differentiation observed in the untreated cells did not occur in the sterol-depleted cells. That the effect of compactin on the induction of CNP relates to depletion of sterol was indicated by the finding that when low-density lipoprotein was added to the compactin-treated cells, the induction of CNP, the morphological expressions of differentiation and the sterol/phospholipid molar ratios were preserved. The degree of sterol depletion that totally prevented the induction of CNP had no effect on (Na++ K+)-activated ATPase activity, total protein synthesis and cell viability. The data define a critical role for sterol in oligodendroglial differentiation in this model system. 相似文献