首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon prepared from silk cotton hull was used to remove a textile dye (reactive blue MR) from aqueous solution by an adsorption technique under varying conditions of agitation time, dye concentration, adsorbent dose and pH. Adsorption depended on solution pH, dye concentration, carbon concentration and contact time. Equilibrium was attained with in 60 min. Adsorption followed both Langmuir and Freundlich isotherm models. The adsorption capacity was found to be 12.9 mg/g at an initial pH of 2+/-0.2 for the particle size of 125-250 microm at room temperature (30+/-2 degrees C).  相似文献   

2.
The adsorption Cr(VI) from aqueous solutions onto hazelnut shell activated carbon was carried out by varying the parameters such as pH, initial Cr(VI) concentration and temperature. The experimental data fitted well to the pseudo first-order kinetic model and then the rate constants were evaluated. The Langmuir isotherm provided the best correlation for Cr(VI) onto the activated carbon. Adsorption capacity was calculated from the Langmuir isotherm as 170 mg/g at an initial pH of 1.0 for the 1000 mg/l Cr(VI) solution. Thermodynamic parameters were evaluated and the adsorption is endothermic showing monolayer adsorption of Cr(VI).  相似文献   

3.
Kraft mills are responsible for large volumes discharges of highly polluted effluents. Application of new bleaching processes (i.e. total chlorine-free (TCF) process) is already a feasible option to reduce environmental impacts. The current trend in the increase in the production of TCF pulp will proportionally increase the consumption of chelating agents. The most commonly used chelants, ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DPTA) are supposed to be relatively persistent substances, poorly degradable in biological treatment facilities and are subsequently considered as environmentally critical compounds. Adsorption could be used as a treatment technique to remove recalcitrant compounds from wastewaters. However, in most cases, sorbent and regeneration costs can make the whole process not economically feasible. The goal of this study was to evaluate the use of Magallanic peat as non-conventional sorbent for EDTA removal from wastewater. Adsorption studies were carried out considering a 2(3) factorial design. pH, temperature and sorbent/sorbate (S/S) relationship effects were evaluated in EDTA adsorption onto Magallanic peat. In addition, adsorption isotherm constants were determined according to the Langmuir and Freundlich models. The results showed that the optimal conditions for EDTA adsorption onto Magallanic peat were 20 degrees C, acid pH (4.0) and a low sorbent/sorbate ratio (0.1/100). At these conditions Magallanic peat showed an adsorption capacity for EDTA (Cs(sat)) of 128.2mg/g, comparable and even better than activated carbon (Cs(sat) 56.5mg/g). EDTA adsorption data at 60 degrees C obtained are not shown due to Magallanic peat degradation phenomena.  相似文献   

4.
Removal and recovery of molybdate from aqueous solution was investigated using ZnCl2 activated carbon developed from coir pith. Studies were conducted to delineate the effects of contact time, adsorbent dose, molybdate concentration, pH and temperature. Two theoretical adsorption isotherms, namely, Langmuir and Freundlich were used to describe the experimental results. The Langmuir adsorption capacity (Q0) was found to be 18.9 mg molybdate/g of the adsorbent. Adsorption followed second order kinetics. Studies were performed at different pH values to find out the pH at which maximum adsorption occurred. The pH effect and desorption studies showed that ion exchange and chemisorption mechanism were involved in the adsorption process. Thermodynamic parameters such as DeltaG0, DeltaH0 and DeltaS0 for the adsorption were evaluated. Effect of foreign ions on adsorption of molybdate has been examined. The results showed that ZnCl2 activated coir pith carbon was effective for the removal and recovery of molybdate from water.  相似文献   

5.
Gao P  Liu ZH  Xue G  Han B  Zhou MH 《Bioresource technology》2011,102(3):3645-3648
Effects of different pretreatment protocols in (NH(4))(2)HPO(4) activation of rice straw on porous activated carbon evolution were evaluated. The pore structure, morphology and surface chemistry of obtained activated carbons were investigated by nitrogen adsorption, scanning electron microscopy and Fourier transform infrared spectroscopy. It was found that pretreatment combining impregnation with (NH(4))(2)HPO(4) and preoxidation could significantly affect the physicochemical properties of prepared activated carbons. The apparent surface area and total pore volume as high as 1154 m(2)/g and 0.670 cm(3)/g were obtained respectively, when combined process of impregnation followed by preoxidation at 200°C and activation at 700°C was carried out. Meanwhile, the activated carbon yield and maximum methylene blue adsorption capacity up to 41.14% and 129.5 mg/g were achieved, respectively. The results exhibited that (NH(4))(2)HPO(4) could be an effective activating agent for producing activated carbons from rice straw.  相似文献   

6.
Powder and granular activated charcoal were evaluated for ethanol adsorptivity from aqueous mixtures using an adsorption isotherm. Ethanol adsorption capacity was more pronounced at 25 degrees C as compared to 5, 15, and 40 degrees C. When pH of the ethanol-buffer mixture (0.09 ionic strength) was changed from acidic (2.3) to neutral and then to alkaline (11.2), ethanol adsorption was decreased. Increasing ionic strength of the ethanol-buffer mixtures from 0.05 to 0.09 enhanced ethanol adsorption but a further increase to 0.14 showed no significant effect. Ethanol adsorption was more efficient from an aqueous ethanol mixture as compared to semidefined and nondefined fermentation worts, respectively. Heating granular charcoal to 400 degrees C for 1 h and 600 degrees C for 3 h in N(2) increased ethanol adsorptivity and heating to 1000 degrees C (1 h) in CO(2) decreased it when ethanol was removed from dilute solutions by simple pass adsorption in a carbon packed column. Granular charcoal was superior to powdered charcoal and an inverse relationship was noted between the weight of the granular carbon bed in the column and ethanol adsorbed/g carbon. Decreasing the column feed flow rate from 7.5 to 2.0 L aqueous ethanol/min increased the adsorption rate.  相似文献   

7.
The removal of a 1:1 by weight mixture of ethanol and ethyl acetate was studied in a gas phase biotrickling filter running under conditions that simulated industrial emissions from the flexographic sector, i.e. discontinuous loading (twelve hours per day and five days per week) and oscillating concentration of the inlet stream. Three sets of experimental conditions were tested in which empty‐bed residence time varied from 60 to 25 s (inlet loads from 50 to 90 g C m?3 h?1). The biotrickling filter reached a maximum elimination capacity of 48.5 g C m?3 h?1 (removal efficiency=68.9%) for an empty‐bed residence time of 40 s. A decrease in the residence time from 40 to 25 s adversely affected the elimination capacity (40.3 g C m?3 h?1, removal efficiency=46.6%). For the three tested residence times, outlet concentrations during pollutant feeding were above 100 mg C m?3 (EU legal limit for flexographic facilities). Then an activated carbon prefilter was installed to buffer the fluctuating concentration, enabling a more stable operation. The desorbed pollutant from the activated carbon during non‐feeding hours also served as an extra source of substrate, avoiding severe starvation. The use of the activated carbon prefilter with a volume 25 times lower than that of the bioreactor was shown to reach an average outlet emission concentration lower than 50 mg C m?3 operating the biotrickling filter at an empty‐bed residence time of 40 s, with a maximum elimination capacity of 59.6 g C m?3 h?1 (removal efficiency=92.0%).  相似文献   

8.
Wang SY  Tsai MH  Lo SF  Tsai MJ 《Bioresource technology》2008,99(15):7027-7033
The objective of this study was to investigate the effects of manufacturing conditions on the adsorption capacity of heavy metal ions by Makino bamboo charcoal. Results show that the specific surface area and iodine number of bamboo charcoal activated at 900 degrees C were larger than those of bamboo charcoal activated at 800 degrees C. The specific surface area of bamboo charcoal activated at 800 degrees C by carbon dioxide was larger than that of charcoal activated by steam. However, a contrary result was observed when the activation temperature was 900 degrees C. The total volume and proportion of micropores in bamboo charcoal activated by carbon dioxide were greater than those in the other sample groups. However, the total volume and bulk volume of meso- and macropores, and average pore diameter for bamboo charcoal activated by steam were greater than those in the other sample groups. Using 5g bamboo charcoal (10-30 mesh) with a soaking time of 24h, a better adsorption effect on Pb2+ (100%), Cu2+ (100%), and Cr3+ (88-98%) was found. However, medium frequencies were observed for the adsorption of Cd2+ (40-80%) and Ni2+ (20-60%). Very limited adsorption of As5+ was detected in this study. For the same charcoal grain sizes, the adsorption capacity of 0.5g of charcoal was better than that of 0.1g. The improved adsorption effect of the sample group activated by steam was compared with the sample group activated by carbon dioxide.  相似文献   

9.
Adsorption kinetic and equilibrium of a basic dye (Astrazon Yellow 7GL) from aqueous solutions at various initial dye concentration (50-300 mg/l), pH (4-10), adsorbent dosage (2-8 g/l), particle size (354-846 microm) and temperature (30-50 degrees C) on wheat bran were studied in a batch mode operation. The result showed that the amount adsorbed of the dye increased with increasing initial dye concentration and contact time, whereas particle size and pH had no significant affect on the amount of dye adsorbed by the adsorbent. A comparison of kinetic models on the overall adsorption rate showed that dye/adsorbent system was best described by the pseudo second-order rate model. The removal rate was also dependent on both external mass transfer and intra-particle diffusion. The low value of the intraparticle diffusivity, 10(-11) cm2/s, indicated the significant influence of intraparticle diffusion on the kinetic control. The adsorption capacity (Q0) calculated from the Langmuir isotherm was 69.06 mg/g for at pH 5.6, 303 K for the particle size of 354 microm. The experimental data yielded excellent fits with Langmuir and Tempkin isotherm equations. Different thermodynamic parameters showed that the reaction was spontaneous and endothermic in nature.  相似文献   

10.
The powdered activated carbon prepared by phosphoric acid activation was significantly affected by the carbonization temperature and the weight ratio between raw material and phosphoric acid. With an activation time of 1h and an impregnation ratio of 1:1, the activated carbons with better adsorption capacity were obtained at 500 degrees C. A reduction in the adsorption capacity of the carbon product at higher acid content than this was observed, possibly due to the collapse of the micropore structure. The properties of the resulting activated carbon were: bulk density 0.251gcm(-3), ash content 4.88%, yield 26.2%, iodine adsorption 1043mgg(-1), methylene blue adsorption number 427mgg(-1), and BET surface area 1239m(2)g(-1).  相似文献   

11.
A tailor-made apparatus called ammoniometer, which is a batch mode respirometer applied to the study of ammonia biodegradation in biofilter media, has been used to evaluate adsorption, absorption, and biodegradation in five different organic materials (compost, coconut fibre, bark, pruning wastes, and peat) obtained from full-scale biofilters in operation in several waste treatment plants. The results showed that absorption could be represented by a Henry's law linear equation, with values of the Henry coefficient significantly higher (from 1,866 to 15,320) than that of pure water (1,498). Adsorption data were successfully fitted to Langmuir and Freundlich isotherms and maximum adsorption capacity varies from 1.06 to 1.81 mg NH(3)/g dry media. Ammonia biodegradation rates for each organic material were also calculated. Biodegradation rates varied from 0.67 to 7.82 mg NH(3)/kg media/d depending on the material tested. The data obtained showed important differences in the behaviour of the biofilter organic media, which has important implications in the design and modelling of these systems.  相似文献   

12.
Humic acid (HA) produced from brown coal, a relatively abundant and inexpensive material is currently being investigated as an adsorbent to remove toxic metals from aqueous solution. The influence of five parameters (contact time, solution pH, initial metal concentration, temperature and amount of adsorbent) on the removal at 20+/-1 degrees C was studied. HAs were prepared from lignites by using alkaline extraction, sedimentation and acidic precipitation. Adsorption equilibrium was achieved in about 60 min for Cr3+ ion. The Langmuir adsorption isotherm was used to describe observed sorption phenomena. The maximum adsorption capacity of 0.17 mmol for Ilgin (HA1), 0.29 mmol for Beysehir (HA2) and 0.18 mmol Ermenek (HA3) and 0.17 mmol of Cr3+/g for activated carbon (AC) was achieved, respectively at pH of 4.1. More than 84% of Cr3+ was removed by HA2, 54% by HA3 and 51% by HA1 and 50% by AC from aqueous solution. The adsorption was strongly dependent on pH but independent of ionic strength and metal ions. The adsorption of Cr3+ was higher between pH 4.1 and 5.1 for all HAs and maximum sorption was observed at pH 4.1. The rise in temperature caused a slight decrease in the value of the equilibrium constant (Kc) for the sorption of Cr3+ ion. Complex mechanisms including ion exchange, complexation and adsorption and size exclusion are possible for sorption of Cr3+ ion on HAs.  相似文献   

13.
The purification of IgG from human plasma was studied by comparing two affinity membranes complexed with Ni(II), prepared by coupling iminodiacetic acid (IDA) and Tris(2-aminoethyl)amine (TREN) to poly(ethylenevinyl alcohol), PEVA, hollow fiber membranes. The Ni(II)-TREN-PEVA hollow fiber membrane had lower capacity for human IgG than the complex Ni(II)-IDA-PEVA, but with similar selectivity. The IgG in peak fractions eluted from the Ni(II)-IDA-PEVA with a stepwise concentration gradient of Tris-HCl pH 7.0 (100-700 mM) reached a purity of 98% (based on IgG, IgM, IgA, albumin, and transferrin nephelometric analysis). Adsorption IgG data at different temperatures (4-37 degrees C) were analyzed using Langmuir model resulting in a calculated maximum capacity at 25 degrees C of 204.6 mg of IgG/g of dry membrane. Decrease in Kd with increasing temperature (1.7x10(-5) to 5.3x10(-6) M) indicated an increase in affinity with increased temperature. The positive value of enthalpy change (26.2 kJ/mol) indicated that the adsorption of IgG in affinity membrane is endothermic. Therefore, lower temperature induces adsorption as verified experimentally.  相似文献   

14.
Ammonia is a metabolic product in the decomposition of protein wastes, and has a recognized inhibitory effect on methanogenesis; this effect has been slightly quantified on methanogenic biofilms and particularly those populated by methanogenic Archaea which produce ammonia as a catabolic product from methylated amines. This paper presents studies on the effect of ammonia on maximum methanogenic activity of anaerobic biofilms enriched by methylaminotrophic methane producing Archaea (mMPA). The effect of unionized free ammonia on the specific maximum methanogenic activity of a mMPA enriched biofilm was studied, using 250 mL flasks containing ceramic rings colonized by 30 day-old experimental biofilm and adding 48.8 (control system), 73.8, 98.8, 148.8, 248.8, 448.8 and 848.8 mg NH(3)-N/L. The systems were maintained for ten days at a pH of 7.5 and temperature of 37 degrees C. The results showed that at 848.8 mg NH(3)-N/L, biofilm methane production required 36 h adaptation period, prior to entering into maximum production phase. The highest maximum methanogenic activity reached a value of 2.337+/-0.213 g COD methane/g VSS *day when 48.8 mg NH(3)-N/L was added, and inhibition was clearly observed in those systems above 148.8 mg NH(3)-N/L, producing under 1.658+/-0.185 g COD methane/g VSS *day. The lowest methanogenic activity reached was 0.639+/-0.162 g COD methane/g VSS *day at the system added with 848.8 mg NH(3)-N/L. When applying the Luong and non-competitive inhibition models, the best fit was obtained with the non-competitive model, which predicted 50% inhibition of methanogenic activity at 365.288 mg NH(3)-N/L.  相似文献   

15.
High efficiency of NH3 and H2S removal from waste gases was achieved by the biotrickling filter. Granular activated carbon (GAC), inoculated with Arthrobacter oxydans CH8 for NH3 removal and Pseudomonas putida CH11 for H2S removal, was used as packing material. Under conditions in which 100% H2S was removed, extensive tests to eliminate high concentrations of NH3 emission-including removal characteristics, removal efficiency, and removal capacity of the system-were performed. The results of the Bed Depth Service Time (BDST) experiment suggested that physical adsorption of NH3 gas by GAC was responsible for the first 10 days, after which NH3 gas was biodegraded by inoculated microorganisms. The dynamic steady state between physical adsorption and biodegradation was about two weeks. After the system achieved equilibrium, the BAC biotrickling filter exhibited high adaptation to shock loading, elevated temperature, and flow rate. Greater than 96% removal efficiency for NH3 was achieved during the 140-day operating period when inlet H2S loading was maintained at 6.25 g-S/m3/h. During the operating period, the pH varied between 6.5 and 8.0 after the physical adsorption stage, and no acidification or alkalinity was observed. The results also demonstrated that NH3 removal was not affected by the coexistence of H2S while gas retention time was the key factor in system performance. The retention time of at least 65 s is required to obtain a greater than 95% NH3 removal efficiency. The critical loading of NH3 for the system was 4.2 g-N/m3/h, and the maximal loading was 16.2 g-N/m3/h. The results of this study could be used as a guide for further design and operation of industrial-scale systems.  相似文献   

16.
Magnetic poly(2-hydroxyethyl methacrylate) mPHEMA beads carrying Cibacron Blue F3GA were prepared by suspension polymerization of HEMA in the presence of Fe3O4 nano-powder. Average size of spherical beads was 80-120 microm. The beads had a specific surface area of 56.0m(2)/g. The characteristic functional groups of dye-attached mPHEMA beads were analyzed by Fourier transform infrared spectrometer (FTIR) and Raman spectrometer. mPHEMA with a swelling ratio of 68% and carrying 28.5 micromol CibacronBlueF3GA/g were used for the purification of lysozyme. Adsorption studies were performed under different conditions in a magnetically stabilized fluidized bed (i.e., pH, protein concentration, flow-rate, temperature, and ionic strength). Lysozyme adsorption capacity of mPHEMA and mPHEMA/Cibacron Blue F3GA beads were 0.8 mg/g and 342 mg/g, respectively. It was observed that after 20 adsorption-desorption cycle, mPHEMA beads can be used without significant loss in lysozyme adsorption capacity. Purification of lysozyme from egg white was also investigated. Purification of lysozyme was monitored by determining the lysozyme activity using Micrococcus lysodeikticus as substrate. The purity of the desorbed lysozyme was about 87.4% with recovery about 79.6%. The specific activity of the desorbed lysozyme was high as 41.586 U/mg.  相似文献   

17.
Palm shell was used to prepare activated carbon using potassium carbonate (K2CO3) as activating agent. The influence of carbonization temperatures (600-1000 degrees C) and impregnation ratios (0.5-2.0) of the prepared activated carbon on the pore development and yield were investigated. Results showed that in all cases, increasing the carbonization temperature and impregnation ratio, the yield decreased, while the adsorption of CO2 increased, progressively. Specific surface area of activated carbon was maximum about 1170 m2/g at 800 degrees C with activation duration of 2 h and at an impregnation ratio of 1.0.  相似文献   

18.
Adsorption studies were conducted to study the removal of 2,4-dichlorophenol (2,4-DCP) from aqueous solution on palm pith carbon under varying experimental conditions such as agitation time, adsorbent dose, pH and temperature. Higher 2,4-DCP was removed with decrease in the initial concentration of 2,4-DCP and increase in amount of adsorbent used. Kinetic study showed that the adsorption of 2,4-DCP on palm pith carbon was a gradual process. Adsorption capacities were 19.16 mg/g for the particle size of 250-500 microm. The equilibrium time was 60 and 80 min for 10 and 20 mg/L and 100 min for both 30 and 40 mg/L phenol concentrations, respectively. Acidic pH was favourable for the adsorption of 2,4-DCP. Studies on pH effect and desorption showed that chemisorption seemed to play a major role in the adsorption process. Thermodynamic study showed that adsorption of 2,4-DCP on palm pith carbon was more favoured. The change in entropy (DeltaS0) and heat of adsorption (DeltaH0) of palm pith carbon was estimated as 30.72 J/mol/k and 7.16 kJ/mol, respectively. The high positive value of change in Gibbs free energy indicated the feasible and spontaneous adsorption of 2,4-DCP on palm pith carbon. The results indicated that palm pith carbon was an attractive candidate for removing phenols from wastewater.  相似文献   

19.
Alcohol adsorption on softwood lignin from aqueous solutions   总被引:2,自引:0,他引:2  
Lignin prepared by acid and enzyme hydrolysis of a softwood mixture adsorbs acetone, butanol, and other alcohols while showing only a slight uptake of glucose. Adsorption of butanol is independent of temperature in the range of 30-65 degrees C. The Polanyi theory fits adsorption for the linear alcohols methanol through hexanol with values of AS and Delta(mu) ranging from 2.6 to 26 J mol(-1) K(-1)and -0.8 to -8 kJ/mol. The adsorption capacity is given by Q (g alcohol/g lignin) = KC(*). Where C(*) is the equilibrium alcohol concentration (g/mL), K = epsilon(W)exp (Delta/R), and epsilon(w) is the porosity of the lignin (0.23-0.42 mL/g). The value of the adsorption capacity constant K for n-butanol ranges from 1.3 to 2.7 mL/g on sorbent containing 26-72% lignin, while ethanol is 0.5-0.73, acetone is 0.62-1.0, and glucose is 0.35. Adsorption is shown to occur through combined hydrophobic and hydrophilic interactions of the alkyl and hydroxyl groups, respectively, of the adsorbate with the lignin. Consequently, for the alcohols methanol to hexanol, we present the capacity constant K[=K(R) + K(OH)] as a sum of an alky! adsorption constant (0.1-9.5 mL/g) and a hydrophilic (0.40-0.50 mL/g) contribution. This approach may be applicable to organic acids. Lignin's sorbent properties have potential to moderate product inhibition in the anaerobic acetone-butanol-ethanol (ABE) fermentation.  相似文献   

20.
Adsorption of water and ethanol on four starches has been studied in the temperature range of 50-90 degrees C. The results show that adsorption of water on starch-based materials is enhanced when the amount of amylopectin is highest. Adsorption of ethanol is not significantly affected by the kind of starch used. Heats of adsorption calculated from retention data are in the range from -9.3 to -13.7 kcal/g mol for water and -5.6 to -6.76 kcal/g mol for ethanol. Calculated free energies of adsorption suggest that adsorption is most spontaneous at lower temperatures as expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号