首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu J  Shen Q  Wu Y 《Life sciences》2008,82(19-20):991-996
  相似文献   

2.
Cardiotrophin-1 (CT-1), a member of the IL-6 family of cytokines, has been shown to be elevated in the serum of patients with ischemic heart disease and valvular heart disease, and induces cardiomyocyte hypertrophy in vitro. We investigated expression of CT-1 in post-MI rat heart and the effect of CT-1 on cultured primary adult rat cardiac fibroblasts. Elevated CT-1 expression was observed in the infarct zone at 24 h and continued through 2, 4 and 8 weeks post-MI, compared to sham-operated animals. CT-1 induced rapid phosphorylation of Jak1, Jak2, STAT1, STAT3, p42/44 MAPK and Akt in cultured adult cardiac fibroblasts. CT-1 induced cardiac fibroblast protein synthesis and proliferation. Protein and DNA synthesis were dependent on activation of Jak/STAT, MEK1/2, PI3K and Src pathways as evidenced by decreased 3H-leucine and 3H-thymidine incorporation after pretreatment with AG490, PD98059, LY294002 and genistein respectively. Furthermore, CT-1 treatment increased procollagen-1-carboxypropeptide (P1CP) synthesis, a marker of mature collagen synthesis. CT-1 induced cell migration of rat cardiac fibroblasts. Our results suggest that CT-1, as expressed in post-MI heart, may play an important role in infarct scar formation and ongoing remodeling of the scar. CT-1 was able to initiate each of the processes considered important in the formation of infarct scar including cardiac fibroblast migration as well as fibroblast proliferation and collagen synthesis. Further work is required to determine factors that induce CT-1 expression and interplay with other mediators of cardiac infarct wound healing in the setting of acute cardiac ischemia and chronic post-MI heart failure.  相似文献   

3.
白介素-6细胞因子家族新成员:心肌营养素-1   总被引:1,自引:0,他引:1  
心肌营养素-1(cardiotrophin-1, CT-1)是一个新发现的白介素-6家族细胞因子,小鼠CT-1的mRNA长约1.4 kb,编码蛋白由203个氨基酸组成,以gp130和LIFR为受体.CT-1对心肌细胞既有肥大诱导作用,又有保护作用;能改变交感神经元的递质表型,促进多巴胺神经元、睫状神经元和运动神经元的存活;还能抑制骨髓白血病细胞M1的生长;诱导肝细胞急性相反应;小鼠腹腔注射给药可增加血小板、红细胞记数和血红蛋白浓度.  相似文献   

4.
Thyroxine (T4) administered to rats in a dose of 1 mg/kg for 12 days induces cardiac hypertrophy. The purpose of the present study was to determine the effect of prophylactic + simultaneous digitoxin treatments on the development of T4-induced cardiac hypertrophy. Digitoxin (1 mg/kg body weight) was given per os, once daily for 6 days prior to T4 administration and continued simultaneously with T4 treatment. To determine myocardial enlargement, wet heart weight, myocardial nucleic acid and protein were measured. Digitoxin treatment induced a slight increase in wet ventricle weight and a significant elevation of myocardial RNA content (mg/ventricles) and concentration (mg/g). At the same time, the degree of T4-induced cardiac hypertrophy in digitoxin-treated and untreated animals was nearly the same. On the basis of these results it can be stated that--unlike the cardiac hypertrophy induced by pressure overload or hypoxia,--the T4-induced cardiac hypertrophy is not altered by digitoxin administration.  相似文献   

5.
Cardiotrophin-1 (CT-1) is known to promote survival but also to induce an elongated morphology of isolated cardiac myocytes, leading to the hypothesis that CT-1, which is chronically augmented in human heart failure, might induce eccentric cardiac hypertrophy and contractile failure. To address this, we used heart tissues reconstituted from neonatal rat cardiac myocytes (engineered heart tissue, EHT) as multicellular in vitro test systems. CT-1 dose-dependently affected contractile function in EHTs. After treatment with 0.1 nM CT-1 (corresponds to plasma levels in humans) for 10 days, twitch tension significantly decreased to 0.30 +/- 0.04 mN (n = 15) vs. 0.45 +/- 0.04 mN (n = 16) in controls. Furthermore, positive inotropic effects of cumulative concentrations of Ca2+ and isoprenaline were significantly diminished. Maximum isoprenaline-induced increase in twitch tension amounted to 0.27 +/- 0.04 mN (n = 15) vs. 0.47 +/- 0.06 mN (n = 16) in controls (P < 0.001). When EHTs were treated for only 5 days, qualitatively similar results were obtained but changes were less pronounced. Immunostaining of whole mount EHT preparations revealed that after CT-1 treatment, the number of nonmyocytes significantly increased by 98% (1 nM, 10 days), and myocytes did not form compact, longitudinally oriented muscle bundles. Interestingly, expression of the Ca2+-handling protein calsequestrin was markedly reduced (69 +/- 7% of control) by treatment with CT-1 (0.1 nM, 10 days). In summary, long-term exposure to CT-1 induces contractile dysfunction in EHTs. Structural changes due to impaired differentiation and/or remodeling of heart tissue may play an important role.  相似文献   

6.
IL-6 has been shown to play a major role in collagen up-regulation process during cardiac hypertrophy, although the precise mechanism is still not known. In this study we have analyzed the mechanism by which IL-6 modulates cardiac hypertrophy. For the in vitro model, IL-6-treated cultured cardiac fibroblasts were used, whereas the in vivo cardiac hypertrophy model was generated by renal artery ligation in adult male Wistar rats (Rattus norvegicus). During induction of hypertrophy, increased phosphorylation of STAT1, STAT3, MAPK, and ERK proteins was observed both in vitro and in vivo. Treatment of fibroblasts with specific inhibitors for STAT1 (fludarabine, 50 μM), STAT3 (S31-201, 10 μM), p38 MAPK (SB203580, 10 μM), and ERK1/2 (U0126, 10 μM) resulted in down-regulation of IL-6-induced phosphorylation of specific proteins; however, only S31-201 and SB203580 inhibited collagen biosynthesis. In ligated rats in vivo, only STAT3 inhibitors resulted in significant decrease in collagen synthesis and hypertrophy markers such as atrial natriuretic factor and β-myosin heavy chain. In addition, decreased heart weight to body weight ratio and improved cardiac function as measured by echocardiography was evident in animals treated with STAT3 inhibitor or siRNA. Compared with IL-6 neutralization, more pronounced down-regulation of collagen synthesis and regression of hypertrophy was observed with STAT3 inhibition, suggesting that STAT3 is the major downstream signaling molecule and a potential therapeutic target for cardiac hypertrophy.  相似文献   

7.
In isolated myocytes, hypertrophy induced by norepinephrine is mediated via α(1)-adrenergic receptors (ARs) and not β-ARs. However, mice with deletions of both major cardiac α(1)-ARs still develop hypertrophy in response to pressure overload. Our purpose was to better define the role of β-AR subtypes in regulating cardiac hypertrophy in vivo, important given the widespread clinical use of β-AR antagonists and the likelihood that patients treated with these agents could develop conditions of further afterload stress. Mice with deletions of β(1), β(2), or both β(1)- and β(2)-ARs were subjected to transverse aortic constriction (TAC). After 3 wk, β(1)(-/-) showed a 21% increase in heart to body weight vs. sham controls, similar to wild type, whereas β(2)(-/-) developed exaggerated (49% increase) hypertrophy. Only when both β-ARs were ablated (β(1)β(2)(-/-)) was hypertrophy totally abolished. Cardiac function was preserved in all genotypes. Several known inhibitors of cardiac hypertrophy (FK506 binding protein 5, thioredoxin interacting protein, and S100A9) were upregulated in β(1)β(2)(-/-) compared with the other genotypes, whereas transforming growth factor-β(2), a positive mediator of hypertrophy was upregulated in all genotypes except the β(1)β(2)(-/-). In contrast to recent reports suggesting that angiogenesis plays a critical role in regulating cardiac hypertrophy-induced heart failure, we found no evidence that angiogenesis or its regulators (VEGF, Hif1α, and p53) play a role in compensated cardiac hypertrophy. Pressure overload hypertrophy in vivo is dependent on a coordination of signaling through both β(1)- and β(2)-ARs, mediated through several key cardiac remodeling pathways. Angiogenesis is not a prerequisite for compensated cardiac hypertrophy.  相似文献   

8.
Ghrelin is a gastric peptide that regulates energy homeostasis. Angiotensin II (Ang II) is known to induce body weight loss and skeletal muscle catabolism through the ubiquitin-proteasome pathway. In this study, we investigated the effects of ghrelin on body weight and muscle catabolism in mice treated with Ang II. The continuous subcutaneous administration of Ang II to mice for 6days resulted in cardiac hypertrophy and significant decreases in body weight gain, food intake, food efficiency, lean mass, and fat mass. In the gastrocnemius muscles of Ang II-treated mice, the levels of insulin-like growth factor 1 (IGF-1) were decreased, and the levels of mRNA expression of catabolic factors were increased. Although the repeated subcutaneous injections of ghrelin (1.0mg/kg, twice daily for 5days) did not affect cardiac hypertrophy, they resulted in significant body weight gains and improved food efficiencies and tended to increase both lean and fat mass in Ang II-treated mice. Ghrelin also ameliorated the decreased IGF-1 levels and the increased mRNA expression levels of catabolic factors in the skeletal muscle. IGF-1 mRNA levels in the skeletal muscle significantly decreased 24h after Ang II infusion, and this was reversed by two subcutaneous injections of ghrelin. In C2C12-derived myocytes, the dexamethasone-induced mRNA expression of atrogin-1 was decreased by IGF-1 but not by ghrelin. In conclusion, we demonstrated that ghrelin improved body weight loss and skeletal muscle catabolism in mice treated with Ang II, possibly through the early restoration of IGF-1 mRNA in the skeletal muscle and the amelioration of nutritional status.  相似文献   

9.
Although heme oxygenase (HO) has been suggested to be involved in the regulation of cardiovascular function through production of carbon monoxide (CO), the pathophysiological significance of HO in hypertensive organ damage remains unknown. We examined the effects of inducing HO-1 mRNA by stannous chloride (SnCl2) on cardiac hypertrophy in stroke-prone spontaneously hypertensive rats (SHR-SP/Izm). Chronic administration of SnCl2 resulted in a significant decrease in left ventricular (LV) weight/body weight ratio and LV brain natriuretic peptide (BNP) mRNA levels as a marker of cardiac hypertrophy and a significant increase in LV HO-1 mRNA levels and LV cGMP contents in SHR-SP/Izm, while there was no significant change in systemic blood pressure. These results provide the first evidence that induction of HO in the heart attenuates cardiac hypertrophy in load-independent mechanism in genetically hypertensive rats.  相似文献   

10.
Evidence has shown that endoplasmic reticulum stress (ERS) is associated with the pathogenesis of cardiac hypertrophy. The aim of this study was to investigate whether direct alleviation of ER stress by 4-phenylbutyric acid (PBA), a known chemical chaperone drug, could attenuate pressure-overload cardiac hypertrophy in mice. The effects of orally administered PBA (100mg/kg body weight daily for a week) were examined using mice undergoing transverse aortic constriction (TAC-mice), an animal model to produce pressure overload. TAC application for 1 week led to a 1.8-fold increase in the ratio of the heart weight over body weight (HW/BW) and up-regulation of the hypertrophy markers ANF and BNF accompanied by up-regulation of ERS markers (GRP78, p-PERK, and p-elF2α). The oral administration of PBA to the TAC-mice reduced hypertrophy (19%) and severely downregulated the fibrosis-related genes (transforming growth factor-β1, phospho-smad2, and pro-collagen isoforms). We conclude that ERS is induced as a consequence of remodeling during pathological hypertrophy and that PBA may help to relieve ERS and play a protective role against cardiac hypertrophy and possibly heart failure. We suggest PBA as a novel therapeutic agent for cardiac hypertrophy and fibrosis.  相似文献   

11.
Cardiac hypertrophy is characterized by a shift in metabolic substrate utilization. Therefore, the regulation of ketone body uptake and metabolism may have beneficial effects on heart injuries that induce cardiac remodelling. In this study, we investigated whether icariside II (ICS II) protects against cardiac hypertrophy in mice and cardiomyocytes. To create cardiac hypertrophy animal and cell models, mice were subjected to transverse aortic constriction (TAC), and embryonic rat cardiomyocytes (H9C2) were stimulated with angiotensin II, a neurohumoral stressor. Both the in vivo and in vitro results suggest that ICS II treatment ameliorated pressure overload–induced cardiac hypertrophy and preserved heart function. In addition, apoptosis and oxidative stress were reduced in the presence of ICS II. Moreover, ICS II inhibited excess autophagy in TAC-induced hearts and angiotensin II–stimulated cardiomyocytes. Mechanistically, we found that ICS II administration regulated SIRT3 expression in cardiac remodelling. SIRT3 activation increased ketone body transportation and utilization. Collectively, our data show that ICS II attenuated cardiac hypertrophy by modulating ketone body and fatty acid metabolism, and that this was likely due to the activation of the SIRT3-AMPK pathway. ICS II treatment may provide a new therapeutic strategy for improving myocardial metabolism in cardiac hypertrophy and heart failure.  相似文献   

12.
13.
The left coronary artery in rats was ligated for a period of 15 days to induce hypertrophy of the non-infarcted myocardium. Left ventricular performances were evaluated in the working heart model. In addition, cardiac hypertrophic indices and noradrenaline content were measured. Variables were determined in the absence or presence of the angiotensin-converting enzyme inhibitor, perindopril. A 35 and 60% decrease in the coronary and cardiac output, respectively, and a 57% decrease in the noradrenaline content of the non-infarcted left ventricular free wall were seen. Furthermore, a 15% increase in the heart/body weight ratio was observed in the infarcted group. After chronic treatment of the animals with perindopril (2 mg.kg-1 body weight, per os), coronary and cardiac output were impaired to a lesser extent: 8 and 35% respectively, with only a 15% decrease in the noradrenaline content of the non-infarcted left ventricular free wall. Furthermore, the increase in heart/body weight ratio was significantly less than in the nontreated infarct group (7%). We conclude that the beneficial effects of converting enzyme inhibition, during the development of myocardial infarction, on left ventricular performances are associated with a decrease in the hypertrophic indices and a normalization of sympathetic activity.  相似文献   

14.
Heat shock proteins are known to be induced during and following different forms of cardiac stress. It has previously been shown that their expression is beneficial for the heart following trauma such as ischaemia-reperfusion (I/R) injury. Heat shock protein 56 (HSP56) belongs to the family of FK506-binding immunophilin proteins and is found in steroid receptor complexes, notably the glucocorticoid receptor. We have previously shown that HSP56 and other HSPs are induced in cardiac myocytes treated with cardiotrophin-1, a cytokine with potent hypertrophic and protective properties on cardiac cells. The hypertrophic action of cardiotrophin-1 on cardiac cells is dependent on HSP56 induction and overexpression of HSP56 is sufficient for inducing hypertrophy in cardiac cells. To investigate this phenomenon in vivo, we have generated transgenic mice overexpressing HSP56 and assessed them for the development cardiac hypertrophy and resistance of their hearts to I/R-injury by Langendorff perfusion. Mice generated demonstrated stable, yet varying expression levels of HSP56. Initial characterisation identified a sex-specific phenotype where male overexpressing mice exhibited a moderate, but significant, reduced body weight compared to wild-type controls. In ex vivo stress analyses we found, unexpectedly, that significant overexpression of HSP56 does not induce myocardial hypertrophy and nor does it protect the intact heart from I/R-injury. These observations now suggest a more intricate HSP56-Sp. Cardiophenotype that requires further studies to determine if HSP56 is necessary in mediating hypertrophy induced by other myocardial stimuli.  相似文献   

15.
Sarcoplasmic reticulum (SR)-mediated Ca(2+) sequestration and release are important determinants of cardiac contractility. In end-stage heart failure SR dysfunction has been proposed to contribute to the impaired cardiac performance. In this study we tested the hypothesis that a targeted interference with SR function can be a primary cause of contractile impairment that in turn might alter cardiac gene expression and induce cardiac hypertrophy. To study this we developed a novel animal model in which ryanodine, a substance that alters SR Ca(2+) release, was added to the drinking water of mice. After 1 wk of treatment, in vivo hemodynamic measurements showed a 28% reduction in the maximum speed of contraction (+dP/dt(max)) and a 24% reduction in the maximum speed of relaxation (-dP/dt(max)). The slowing of cardiac relaxation was confirmed in isolated papillary muscles. The late phase of relaxation expressed as the time from 50% to 90% relaxation was prolonged by 22%. After 4 wk of ryanodine administration the animals had developed a significant cardiac hypertrophy that was most prominent in both atria (right atrium +115%, left atrium +100%, right ventricle +23%, and left ventricle +13%). This was accompanied by molecular changes including a threefold increase in atrial natriuretic factor mRNA and a sixfold increase in beta-myosin heavy chain mRNA. Sarcoplasmic endoplasmic reticulum Ca(2+) mRNA was reduced by 18%. These data suggest that selective impairment of SR function in vivo can induce changes in cardiac gene expression and promote cardiac growth.  相似文献   

16.
Angiotensin II can induce cardiac hypertrophy by stimulating the release of growth factors. ACE inhibitors reduce angiotensin II levels and cardiac hypertrophy, but their effects on the healthy heart are largely unexplored. We hypothesized that ACE inhibition decreases left ventricular mass in normotensive animals and that this is associated with altered expression of cardiac fetal genes, growth factors, and endothelial nitric oxide synthase (eNOS). Wistar rats (n = 7 per group) were orally administered with enalapril twice daily for a total daily dose of 5 mg·kg(-1)·d(-1) (ENAP5) or 15 mg·kg(-1)·d(-1) (ENAP15) or vehicle. Systolic blood pressure was measured by the tail-cuff method. Left ventricular expression of cardiac myosin heavy chain-α (MYH6) and -β (MYH7), atrial natriuretic peptide (ANP), endothelin-1 (ET-1), transforming growth factor β-1 (TGFβ-1), cardiotrophin-1 (CT-1), and renal renin were examined by real-time PCR, and eNOS using Western blot. Blood pressure was decreased only in ENAP15 animals (p < 0.05 vs. Control), whereas left ventricular mass decreased after both doses of enalapril (p < 0.05 vs. Control). MYH7 and ANP were reduced in ENAP15, while no changes in ET-1, TGFβ-1, CT-1, and MYH6 mRNA or eNOS protein were observed. Renal renin dose-dependently increased after enalapril treatment. Enalapril significantly decreased left ventricular mass even after 1 week treatment in the normotensive rat. This was associated with a decreased expression of the fetal genes MYH7 and ANP, but not expression of ET-1, CT-1, or TGFβ-1.  相似文献   

17.
Cellular repressor of E1A-stimulated genes (CREG) is a secreted glycoprotein of 220 amino acids. It has been proposed that CREG acts as a ligand that enhances differentiation and/or reduces cell proliferation. CREG has been shown previously to attenuate cardiac hypertrophy in vitro . However, such a role has not been determined in vivo . In the present study, we tested the hypothesis that overexpression of CREG in the murine heart would protect against cardiac hypertrophy and fibrosis in vivo . The effects of constitutive human CREG expression on cardiac hypertrophy were investigated using both in vitro and in vivo models. Cardiac hypertrophy was produced by aortic banding and infusion of angiotensin II in CREG transgenic mice and control animals. The extent of cardiac hypertrophy was quantitated by two-dimensional and M-mode echocardiography as well as by molecular and pathological analyses of heart samples. Constitutive over-expression of human CREG in the murine heart attenuated the hypertrophic response, markedly reduced inflammation. Cardiac function was also preserved in hearts with increased CREG levels in response to hypertrophic stimuli. These beneficial effects were associated with attenuation of the mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase 1 (MEK-ERK1)/2-dependent signalling cascade. In addition, CREG expression blocked fibrosis and collagen synthesis through blocking MEK-ERK1/2-dependent Smad 2/3 activation in vitro and in vivo . Therefore, the expression of CREG improves cardiac functions and inhibits cardiac hypertrophy, inflammation and fibrosis through blocking MEK-ERK1/2-dependent signalling.  相似文献   

18.
The cyclin-dependent kinase inhibitor p21CIP1/WAF1 (p21) is highly expressed in the adult heart. However, in response to stress, its expression is downregulated. Therefore, we investigated the role of p21 in the regulation of cardiac hypertrophic growth. At 2 months of age, p21 knockout mice (p21KO) lack an overt cardiac phenotype. In contrast, by 10 months of age, p21KO developed age-dependent cardiac hypertrophy and heart failure. After 3 weeks of trans-aortic banding (TAB), the heart/body weight ratio in 11 week old p21KO mice increased by 57%, as compared to 42% in wild type mice indicating that p21KO have a higher susceptibility to pressure overload-induced cardiac hypertrophy. We then chronically infused 8 week old wild type mice with Angiotensin II (2.0 mg/kg/min) or saline subcutaneously by osmotic pumps for 14 days. Recombinant TAT conjugated p21 protein variants (10 mg/kg body weight) or saline were intraperitoneally injected once daily for 14 days into Angiotensin II and saline-infused animals. Angiotensin II treated mice developed pathological cardiac hypertrophy with an average increase of 38% in heart/body weight ratios, as compared to saline-treated controls. Reconstitution of p21 function by TAT.p21 protein transduction prevented Angiotensin II-dependent development of cardiac hypertrophy and failure. Taken together, our genetic and biochemical data show an important function of p21 in the regulation of growth-related processes in the heart.  相似文献   

19.
Breviscapine is a mixture of flavonoid glycosides extracted from the Chinese herbs. Previous studies have shown that breviscapine possesses comprehensive pharmacological functions. However, very little is known about whether breviscapine have protective role on cardiac hypertrophy. The aim of the present study was to determine whether breviscapine attenuates cardiac hypertrophy induced by angiotensin II (Ang II) in cultured neonatal rat cardiac myocytes in vitro and pressure‐overload‐induced cardiac hypertrophy in mice in vivo. Our data demonstrated that breviscapine (2.5–15 µM) dose‐dependently blocked cardiac hypertrophy induced by Ang II (1 µM) in vitro. The results further revealed that breviscapine (50 mg/kg/day) prevented cardiac hypertrophy induced by aortic banding as assessed by heart weight/body weight and lung weight/body weight ratios, echocardiographic parameters, and gene expression of hypertrophic markers. The inhibitory effect of breviscapine on cardiac hypertrophy is mediated by disrupting PKC‐α‐dependent ERK1/2 and PI3K/AKT signaling. Further studies showed that breviscapine inhibited inflammation by blocking NF‐κB signaling, and attenuated fibrosis and collagen synthesis through abrogating Smad2/3 signaling. Therefore, these findings indicate that breviscapine, which is a potentially safe and inexpensive therapy for clinical use, has protective potential in targeting cardiac hypertrophy and fibrosis through suppression of PKC‐α‐dependent signaling. J. Cell. Biochem. 109: 1158–1171, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Recently, the calciumcalmodulindependent calcineurin pathway has been defined as a central pathway for the induction of cardiac hypertrophy. The purpose of this study was to determine if cardiac hypertrophy in animals chronically treated with angiotensin II (AngII), could be prevented by blocking this pathway with cyclosporin A (CsA). Female Wistar rats were treated with AngII by subcutaneous infusion and injected twice a day with CsA (25 mg/kg) for 7 days. In the AngII treated group there was a 30% increase in the heart/body weight ratio (p < 0.05 vs. control). The increase in heart weight was blocked with CsA. Substantial increases in ANF and MHC gene expression were detected in the AngII treated animals, which were either attenuated or blocked with CsA treatment. Thus, this study demonstrates that CsA does prevent the development of cardiac hypertrophy in Ang II treated rats, suggesting that the calciumcalmodulindependent calcineurin pathway is associated with angiotensin II induced hypertrophy in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号