首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The structural gene, nirK, for the respiratory Cu-containing nitrite reductase from denitrifying Pseudomonas aureofaciens was isolated and sequenced. It encodes a polypeptide of 363 amino acids including a signal peptide of 24 amino acids for protein export. The sequence showed 63.8% positional identity with the amino acid sequence of Achromobacter cycloclastes nitrite reductase. Ligands for the blue, type I Cu-binding site and for a putative type-II site were identified. The nirK gene was transferred to the mutant MK202 of P. stutzeri which lacks cytochrome cd 1 nitrite reductase due to a transposon Tn5 insertion in its structural gene, nirS. The heterologous enzyme was active in vitro and in vivo in this background and restored the mutationally interrupted denitrification pathway. Transfer of nirK to Escherichia coli resulted in an active nitrite reductase in vitro. Expression of the nirS gene from P. stutzeri in P. aureofaciens and E. coli led to nonfunctional gene products. Nitrite reductase activity of cell extract from either bacterium could be reconstituted by addition of heme d 1, indicating that both heterologous hosts synthesized a cytochrome cd 1 without the d 1-group.Abbreviations Cu-NIR Cu-containing nitrite reductase - DDC diethyldithiocarbamate - EPR electron paramagnetic resonance - IPTG isopropyl--D-galactoside - SDS sodium dodecyl sulfate - LB medium Luria-Bertani medium  相似文献   

2.
By using the gene encoding the C-terminal part of thecd 1-type nitrite reductase ofPseudomonas stutzeri JM300 as a heterologous probe, the corresponding gene fromParacoccus denitrificans was isolated. This gene,nirS, codes for a mature protein of 63144 Da having high homology withcd 1-type nitrite reductases from other bacteria. Directly downstream fromnirS, three othernir genes were found in the ordernirECF. The organization of thenir gene cluster inPa. denitrificans is different from the organization ofnir clusters in some Pseudomonads.nirE has high homology with a S-adenosyl-L-methionine:uroporphyrinogen III methyltransferase (uro'gen III methylase). This methylase is most likely involved in the hemed 1 biosynthesis inPa. denitrificans. The third gene,nirC, codes for a small cytochromec of 9.3 kDa having high homology with cytochromec 55X ofPs. stutzeri ZoBell. The 4th gene,nirF, has no homology with other genes in the sequence databases and has no relevant motifs. Inactivation of either of these 4 genes resulted in the loss of nitrite and nitric oxide reductase activities but not of nitrous oxide reductase activity.nirS mutants lack thecd 1-type nitrite reductase whilenirE, nirC andnirF mutants produce a small amount ofcd 1-type nitrite reductase, inactive due to the absence of hemed 1. Upstream from thenirS gene the start of a gene was identified which has limited homology withnosR, a putative regulatory gene involved in nitrous oxide reduction. A potential FNR box was identified between this gene andnirS.Abbreviations SDS sodium dodecyl sulfate - NBT nitroblue tetrazolium - PAGE polyacrylamide gel electrophoresis  相似文献   

3.
A chromosomal gene, required for nodule development on Phaseolus bean, was characterized from Rhizobium etli strain TAL182. MLC640 is a Tn5 insertion mutant of TAL182 which shows decreased motility in soft TY agar and is defective in nodule development. The site of Tn5 insertion in MLC640 mapped to a 3.6-kb EcoRI chromosomal fragment. The 3.6-kb fragment was subcloned from the cosmid pUHR80 which complemented MLC640. Further subcloning and site-directed Tn5 mutagenesis localized the gene for nodule development to a 1.7-kb region within the 3.6-kb EcoRI fragment. Southern hybridization using the 3.6-kb EcoRI fragment as the probe against genomic DNA of several Rhizobium spp. indicated that this gene is conserved in different rhizobia.The authors are with the Department of Plant Molecular Physiology, University of Hawaii, 3050 Maile Way, Gimore 402, Honolulu, Hawaii 96822. USA;  相似文献   

4.
Mutants with defective respiratory nitrite utilization (Nir- phenotype) were obtained by transposon Tn5 insertion into genomic DNA of the ZoBell strain of Pseudomonas stutzeri. Three representative mutants were characterized with respect to their activities of nitrite and nitric oxide reduction, cytochrome cd 1 content, and pattern of soluble c-type cytochromes. Mutant strain MK201 over-produced cytochrome c 552 about fourfold by comparison with the wild type, but possessed an in vitro functional cytochrome cd 1. Mutant strain MK202 lacked cytochrome cd 1 and, simultaneously, had low amounts of cytochrome c 552 and the split -peak c-type cytochrome. Strain MK203 synthesized nitrite reductase defective in the heme d 1 prosthetic group. Irrespective of these biochemically distinct Nir- phenotypes, all mutants preserved the nitric oxidereducing capability of the wild type. The mutant characteristics demonstrate that cytochrome cd 1 is essential for nitrite respiration of P. stutzeri and establish the presence of a nitric oxide-reducing system distinct from cytochrome cd 1. They also indicate the functional or regulatory interdependence of c-type cytochromes.  相似文献   

5.
The novel multicopper enzyme nitrous oxide reductase from Pseudomonas perfectomarina was purified to homogeneity to study its properties and distribution in various pseudomonads and other selected denitrifying genera by immunochemical techniques. Quantitation of immunochemical crossreactivity by micro-complement fixation within the denitrifying pseudomonads of Palleroni's ribosomal ribonucleic acid group I corresponded to the taxonomic positions established by nucleic acid hybridization. The assignment of P. perfectomarina to the stutzeri-group (as strain ZoBell) was consolidated by immunochemical crossreactivity based on nitrous oxide reductase. Crossreactivity of nitrite reductase (cytochrome cd 1) with a respective P. perfectomarina rabbit antiserum was limited to strain DSM 50227 of P. stutzeri; although it could not contribute information towards broader relationships within rRNA group I, it lent further prove to the unity of these two species.  相似文献   

6.
Summary We have cloned two genes, nirB +and cysG +which are required for NADH-dependent nitrite reductase to be active, from the 74 min region of the Escherichia coli chromosome. Restriction mapping and complementation analysis establish the gene order crp-nirB-cysG-aroB. Both genes are trans-dominant in merodiploids and, under some conditions, can be expressed independently. The cysG +gene can be expressed from both high and low copy number plasmids carrying a 3.6 kb PstI-EcoRI restriction fragment. Attempts to sub-clone the nirB +gene into pBR322 on a 14.5 kb EcoRI fragment were unsuccessful, but this fragment was readily sub-cloned into and expressed from the low copy number plasmid pLG338 (Stoker et al. 1982). Overproduction of the 88 kDa nitrite reductase apoprotein by strains carrying a functional nirB +gene suggests that nirB is the structural gene for this enzyme.  相似文献   

7.
Summary A genomic library of Pseudomonas fluorescens subsp. cellulosa DNA was constructed in bacteriophage 47.1 and recombinants expressing carboxymethylcellulase (CMCase) activity isolated. A 7.3 kb partial EcoRI fragment, a 9.4 kb EcoRI fragment and a 5.8 kb HindIII fragment were subcloned from three different phages into pUC18 to yield recombinant plasmids pJHH1, pJHH3 and pGJH2 respectively. Cells of Escherichia coli harbouring these plasmids expressed CMCase activity. The positions of the CMCase genes in the three plasmids were determined by subcloning and transposon mutagenesis. pJHH1 contained two distinct DNA regions encoding CMCases, which were controlled by the same promoter. All four cloned enzymes cleaved p-nitrophenyl--D-glucopyranoside, although at a very low rate, but none exhibited exoglucanase activity. In common with other extracellular enzymes cloned in E. coli, all the CMCases were exported to the periplasmic space in the enteric bacterium. The carboxymethylcellulase genes encoded by pJHH1 and pJHH3, were subject to glucose repression in E. coli.Abbreviations SSC 0.15 M NaCl, 0.015 M sodium citrate - Smr resistance to streptomycin - Kmr resistance to kanamycin - Apr resistance to ampicillin - Tcr resistance to tetracycline - Cmr resistance to chloramphenicol - CMCase carboxymethylcellulase  相似文献   

8.
The reduction of nitrite into nitric oxide (NO) in denitrifying bacteria is catalyzed by nitrite reductase. In several species, this enzyme is a heme-containing protein with one c heme and one d1 heme per monomer (cd1NiR), encoded by the nirS gene.  相似文献   

9.
Summary Screening the tryptophan (Trp)-dependent indole-3-acetic acid (IAA) production of different Azospirillum species revealed that A. irakense KA3 released 10 times less IAA into the medium than A. brasilense Sp7. A cosmid library of strain Sp7 was transferred into A. irakense KA3 with the aim of characterizing genes involved in IAA biosynthesis. Trp-dependent IAA production was increased in two transconjugants which both contained an identical 18.5 kb HindIII fragment from Sp7. After Tn5 mutagenesis, cosmids carrying Tn5 insertions at 36 different positions of the 18.5 kb fragment were isolated and transferred into strain KA3. IAA production by the recipient strains was screened by HPLC. The Tn5 insertions of 4 clones with decreased IAA production were mapped on a 2 kb Sall — SphI fragment. Recombination of Tn5 insertions at this locus into the genome of strain Sp7 led to Trp auxotrophic mutants. A 5.2 kb EcoRI — SalI fragment including the kb SalI — SphI fragment was sequenced and six open reading frames were identified. Three of them were clustered and their deduced amino acid sequences showed significant similarity to TrpG, TrpD and TrpC, which are enzymes involved in tryptophan biosynthesis. One of the remaining open reading frames probably encodes an acetyltransferase. The region responsible for the enhanced Trp-dependent IAA production in strain KA3 corresponded to trpD, coding for the phosphoribosyl anthranilate transferase.  相似文献   

10.
Summary A 4 kb SalI fragment from Azospirillum brasilense Sp7 that shares homology with a 6.8 kb EcoRI fragment carrying nodGEFH and part of nodP of Rhizobium meliloti 41 was cloned in pUC18 to yield pAB503. The nucleotide sequence of a 2 kb SalI-SmaI fragment of the pAB503 insert revealed an open reading frame, named ORF3, encoding a polypeptide sharing 40% identity with R. mehloti NodG. The deduced polypeptide also shared 60% identity with the Alcaligenes eutrophus NADPH-dependent acetoacetyl-CoA (AA-CoA) reductase, encoded by the pbbB gene and involved in poly--hydroxybutyrate (PHB) synthesis. Northern blot analysis and promoter extension mapping indicated that ORF3 is expressed as a monocistronic operon from a promoter that resembles the Escherichia coli 70 consensus promoter. An ORF3-lacZ translational fusion was constructed and was very poorly expressed in E. coli, but was functional and constitutively expressed in Azospirillum. Tn5-Mob insertions in ORF3 did not affect growth, nitrogen fixation, PHB synthesis or NAD(P)H-linked AA-CoA reductase activity. An ORF3 DNA sequence was used to probe total DNA of several Azospirillum strains. No ORF3 homologues were found in A. irakense, A. amazonense, A. halopraeferens or in several A. lipoferum strains.  相似文献   

11.
Summary A 15.2 kb DNA fragment was isolated from Rhodobacter capsulatus (ex. Rhodopseudomonas capsulata), which was able to complement mutations both in a nifA-like regulatory gene and in the nifH gene. Physical mapping of this fragment revealed that the nifA-like gene was adjacent to, and downstream from, the nifHDK operon. Hybridization experiments were carried out using a cloned Klebsiella pneumoniae DNA fragment containing nifA and the flanking portions of nifB and nifL. This fragment failed to hybridize with a 2.15 kb HindIII fragment of R. capsulatus DNA containing the nifA-like gene, but hybridized instead with a 2.6 kb EcoRI fragment adjacent to the nifA-like gene. The homologous region was found to be located within the K. pneumoniae nifB gene. The adjacent 2.6 kb and 2.15 kb fragments also hybridized with each other, indicating the presence of repeated sequences in this region.  相似文献   

12.
Summary Genomic DNA from Azotobacter chroococcum was shown by DNA hybridization to contain sequences homologous to Rhizobium japonicum H2-uptake (hup) hydrogenase genes carried on the plasmid pHU1. Two recombinant cosmid clones, pACD101 and pACD102, were isolated from a gene library of A. chroococcum by colony hybridization and physically mapped. Each contained approximately 42 kb of insert DNA with approximately 27 kb of overlapping DNA. Further hybridization studies using three fragments from pHU1 (6 kb HindIII, 6.4 kb BglII and 5 kb EcoRI) showed that the hup-specific regions of R. japonicum and A. chroococcum are probably highly conserved. Weak homology to the hydrogenase structural genes from Desulfovibrio vulgaris (Hildenborough) was also observed. A 24 kb BamHI fragment from pACD102 subcloned into a broad host-range vector restored hydrogenase activity to several Hup- mutants of A. chroococcum.  相似文献   

13.
An EcoRI fragment of Rhizobium meliloti M2011 which shows homology to Klebsiella pneumoniae DNA carrying nifH and nifD was cloned in both orientations into the Cm gene of plasmid pACYC184 and expressed in Escherichia coli minicells. Fragment specific polypeptides of Mr 12 500, 21 000, 30 000, and 31 000 could be identified. By transposon mutagenesis it was shown that two of them (Mr 12 500 and 21 000) are fusion products with parts of the chloramphenicol acetyltransferase. The other two polypeptides are specified by one coding region which could be mapped by transposon mutagenesis. There are several reasons (homology to Klebsiella nifH, sequence data and molecular weight of the gene products) to assume that this coding region represents the R. meliloti nifH gene (gene for the subunit of the R. meliloti nitrogenase reductase, RmII).  相似文献   

14.
Respiratory nitrite reductase (NIR) has been purified from the soluble extract of denitrifying cells of Alcaligenes eutrophus strain H16 to apparent electrophoretic homogeneity. The enzyme was induced under anoxic conditions in the presence of nitrite. Purified NIR showed typical features of a cytochrome cd 1-type nitrite reductase. It appeared to be a dimer of 60 kDa subunits, its activity was only weakly inhibited by the copper chelator diethyldithiocarbamate, and spectral analysis revealed absorption maxima which were characteristic for the presence of heme c and heme d 1. The isoelectric point of 8.6 was considerably higher than the pI determined for cd 1 nitrite reductases from pseudomonads. Eighteen amino acids at the N-terminus of the A. eutrophus NIR, obtained by protein sequencing, showed no significant homology to the N-terminal region of nitrite reductases from Pseudomonas stutzeri and Pseudomonas aeruginosa.  相似文献   

15.
A 7.1 kb EcoRI fragment from Azospirillum brasilense, that hybridized with a probe carrying the ntrBC genes from Bradyrhizobium japonicum, was cloned. The nucleotide sequence of a 3.8 kb subfragment was established. This led to the identification of two open reading frames, encoding polypeptides of 401 and 481 amino acids, that were similar to NtrB and NtrC, respectively. A broad host range plasmid containing the putative Azospirillum ntrC gene was shown to restore nitrogen fixation under free-living conditions to a ntrC-Tn5 mutant of Azorhizobium caulinodans. Several Tn5 insertion mutants were isolated in the ntrBC coding region in A. brasilense. These mutants were prototrophic and Nif+. However, their nitrogenase activity was slightly lower than in the wild type and they were unable to grow on nitrate as sole nitrogen source. Under microaerobiosis and in the absence of ammonia, a nifA-lacZ fusion was expressed in the mutants at about 60% of the level in the wild type. In the presence of ammonia, the fusion was similarly expressed (60% of the maximum) both in the wild type and mutants. Addition of ammonia to a nitrogen-fixing culture of ntrBC mutants did not abolish nitrogenase activity, in contrast with the wild type. It thus appears that in Azospirillum the ntrBC genes are not essential for nitrogen fixation, although NtrC controls nifA expression to some extent. They are, however, required for the switch-off of nitrogenase activity.  相似文献   

16.
Immunogold labelling techniques on ultrathin sections of low temperature embedded cells yielded evidence for the periplasmic location of the respiratory enzymes N2O reductase and nitrite reductase (cytochrome cd 1) in Pseudomonas stutzeri strain ZoBell. Cell fractionation by spheroplast preparation and two-dimensional electrophoresis showed the absence of a membrane association of these enzymes. Immunocytochemical localization of N2O reductase in a mutant strain deficient in the chromophore of N2O reductase showed the gold label at the cell periphery, indicating that the copper chromophore processing takes place after export of this protein's apoform.  相似文献   

17.
18.
Cytochrome cd 1-nitrite reductase and nitrous oxide reductase of Thiobacillus denitrificans were purified and characterized by biochemical and immunochemical methods. In contrast to the generally soluble nature of the denitrification enzymes, these two enzymes were isolated from the membrane fraction of T. denitrificans and remained active after solubilization with Triton X-100. The properties of the membrane-derived enzymes were similar to those of their soluble counterparts from the same organism. Nitrous oxide reductase activity was inhibited by acetylene. Nitrite reductase and nitrous oxide reductase cross-reacted with antisera raised against the soluble enzymes from Pseudomonas stutzeri. The nirS, norBC, and nosZ genes encoding the cytochrome cd 1-nitrite reductase, nitric oxide reductase, and nitrous oxide reductase, respectively, from P. stutzeri hybridized with genomic DNA from T. denitrificans. Cross-reactivity and similar N-terminal amino acid and gene sequences suggest that the primary structures of the Thiobacillus enzymes are homologous to the soluble proteins from P. stutzeri. Received: 18 August 1995 / Accepted: 30 October 1995  相似文献   

19.
Summary Sporulation gene spoIVC of Bacillus subtilis was cloned by the prophage transformation method in temperate phage 105. The specialized transducing phage, 105spoIVC-1, restored the sporulation of the asporogenous mutant of B. subtilis strain 1S47 (spoIVC133). Transformation experiments showed that the spoIVC gene resides on a 7.3 kb HindIII restriction fragment. Subsequent analysis of the 7.3 kb HindIII fragment with restriction endonuclease EcoRI showed that the spoIVC gene resides on a 3.6 kb EcoRI fragment within the 7.3 kb fragment. The 3.6 kb fragment was recloned into the unique EcoRI site of plasmid pUB110 and deletion derivatives having a deletion within the 3.6 kb insert were constructed. The plasmid carrying the entire spoIVC gene restored the sporulation of strain HU1214 (spoIVC133, recE4) at a frequency of 107 spores/ml, and reduced the sporulation of strain HU1018 (spo +, recE4) to 107 spores/ml.  相似文献   

20.
Using DNA clones, the physical distance between the linked genesnov andstr inHaemophilus influenzae was estimated. Although none of the cloned inserts contained both the markers, pJ1-8StrR 13 (insert of 18·7 kb) includedstr gene at one end and part ofnov gene at the other end of the insert. By EcoRI restriction analysis and by Southern hybridization, the distance between the two EcoRI sites, cutting at which inactivates the two genes, was estimated to be 17·7 kb. A single continuous EcoRI fragment (containing 4EcoRI sites within it) carrying both the genes intact would need to be 20·4 kb in size. These estimates were confirmed independently using different clones ofnov r andstr r alleles as probes for hybridization with BamHI-digested chromosomal DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号