首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In eukaryotic cells the nucleus and its contents are separated from the cytoplasm by the nuclear envelope. Macromolecules, as well as smaller molecules and ions, can cross the nuclear envelope through the nuclear pore complex. Molecules greater than approx. 60 kDa and containing a nuclear localization signal are actively transported across the nuclear membranes, but there has been little evidence for regulatory mechanisms for smaller molecules and ions. Recently, diffusion across the nuclear envelope has been observed to be regulated by nuclear cisternal Ca2+ concentrations. Following depletion of Ca2+ from the nuclear store by inositol 1,4,5-trisphosphate or Ca2+ chelators, a fluorescent 10 kDa marker molecule was no longer able to enter the nucleus. Distinct conformational states of the nuclear pore complexes depended on the Ca2+ filling state of the nuclear envelope, supporting the assumption that a switch in the conformation of the nuclear pore complex may control the transport of intermediate-sized molecules across the nuclear envelope. Thus nuclear Ca2+ stores may regulate the conformational state of the nuclear pore complex, and thereby passive diffusion of molecules between the cytosol and the nucleoplasm. The physiological significance of this finding is currently unknown.  相似文献   

2.
Nuclear pores in cells of the yeast Saccharomyces cerevisiae were examined by using the freeze-fracture technique. Nuclear pore diameters in actively growing cells appear to be exclusively of the normal diameter (75 to 115 nm), whereas some pore diameters in abnormally small G1-arrested cells produced by nitrogen starvation are unusually wide (120 to 160 nm). There may be a correlation between nuclear pore size and nuclear envelope size, the larger pores tending to occur in the smaller envelopes. The finding suggests that nuclear pore diameter may not function in regulating the flow of informational molecules from nucleus to cytoplasm, but may be implicated in regulating the flow of substrates into the nucleus.  相似文献   

3.
信号蛋白分子的入核及出核转运是细胞因子和生长因子信号转导途径中的重要环节.核定位序列(NLS)是信号蛋白分子上与入核转运相关的氨基酸序列.核孔复合物(NPC)、核转运蛋白importin和能量供应体Ran/TC4在入核转运过程中也发挥了重要作用.另外,很多细胞因子和生长因子或其受体上所含有的NLS序列也具有核定位功能,并可能通过“伴侣机制”参与其他信号蛋白分子的入核转运.  相似文献   

4.
The double membrane of the nuclear envelope is a formidable barrier separating the nucleus and cytoplasm of eukaryotic cells. However, movement of specific macromolecules across the nuclear envelope is critical for embryonic development, cell growth and differentiation. Transfer of molecules between the nucleus and cytoplasm occurs through the aqueous channel formed by the nuclear pore complex (NPC)
  • 1 Abbreviations: NPC, nuclear pore complex; GlcNac, N-acetylglucosamine; WGA, wheat germ agglutinin
  • . Although small molecules may simply diffuse across the NPC, transport of large proteins and RNA requires specific transport signals and is energy dependent. A family of pore glycoproteins modified by O-linked N-acetylglucosamine moieties are essential for transport through the NPC. Recent evidence suggests that the regulation of nuclear transport may also involve the inteaction of RNA and nuclear proteins with specific binding proteins that recognize these transport signals. Are these nuclear pore glycoproteins and signal binding proteins the ‘gatekeepers’ that control access to the genetic material? Recent evidence obtained from a combination of biochemical and genetic approaches suggests – perhaps.  相似文献   

    5.
    Nuclear pore complexes (NPCs) control the movement of molecules across the nuclear envelope (NE). We investigated the molecular interactions that exist at the interface between the NPC scaffold and the pore membrane. We show that key players mediating these interactions in mammalian cells are the nucleoporins Nup155 and Nup160. Nup155 depletion massively alters NE structure, causing a dramatic decrease in NPC numbers and the improper targeting of membrane proteins to the inner nuclear membrane. The role of Nup155 in assembly is likely closely linked to events at the membrane as we show that Nup155 interacts with pore membrane proteins Pom121 and NDC1. Furthermore, we demonstrate that the N terminus of Pom121 directly binds the β-propeller regions of Nup155 and Nup160. We propose a model in which the interactions of Pom121 with Nup155 and Nup160 are predicted to assist in the formation of the nuclear pore and the anchoring of the NPC to the pore membrane.  相似文献   

    6.
    FRAP法对内源性GFP在活细胞中动态分布的共焦显微镜成像   总被引:1,自引:0,他引:1  
    金鹰  邢达 《激光生物学报》2005,14(4):293-298
    各种分子在核质问的动态分布与它们的跨膜转运密切相关。离子、r证矾A和多数小分子量蛋白可以通过核孔复合物(NPG,nuclear pore complexes)在核质问自由扩散,而分子量大于70kDa的分子需要ATP和核定位序列才能实现跨膜转运。本实验利用荧光漂白后恢复(FRAP,fluorescence recovery after photobleaching)法观测人肺腺癌肿瘤细胞(ASTC-a-1)中表达的27 kDa EGFP在核质问的被动扩散,并以激光共焦显微镜进行实时成像。转染EGFP外源基因的肿瘤细胞系在经过半年的传代培养后仍能稳定而高效的表达其荧光标记。实验表明,EGFP分子可以通过核孔在核质间被动扩散,但扩散速度远低于在核内或质内的速度,没有证据表明EGFP可以在细胞问扩散。  相似文献   

    7.
    The number of ribosomal RNA molecules which are transferred through an average nuclear pore complex per minute into the cytoplasm (nuclear pore flow rate, NPFR) during oocyte growth of Xenopus laevis is estimated. The NPFR calculations are based on determinations of the increase of cytoplasmic rRNA content during defined time intervals and of the total number of pore complexes in the respective oogenesis stages. In the mid-lampbrush stage (500–700 μm oocyte diameter) the NPFR is maximal with 2.62 rRNA molecules/pore/minute. Then it decreases to zero at the end of oogenesis. The nucleocytoplasmic RNA flow rates determined are compared with corresponding values of other cell types. The molecular weight of the rRNA precursor transcribed in the extrachromosomal nucleoli of Xenopus lampbrush stage oocytes is determined by acrylamide gel electrophoresis to be 2.5 × 106 daltons. From the temporal increase of cytoplasmic rRNA (3.8 μg per oocyte in 38 days) and the known number of simultaneously growing precursor molecules in the nucleus the chain growth rate of the 40 S precursor RNA is estimated to be 34 nucleotides per second.  相似文献   

    8.
    9.
    Nuclear pore complexes provide channels for molecular transport across the nuclear envelope. Translocation of most proteins and RNAs through the pore complex is mediated by signal- and ATP-dependent mechanisms, while transport of small molecules is accomplished by passive diffusion. We report here that depletion of calcium from the lumen of the endoplasmic reticulum and nuclear envelope with ionophores or the calcium pump inhibitor thapsigargin rapidly and potently inhibits signal mediated transport of proteins into the nucleus. Lumenal calcium depletion also inhibits passive diffusion through the pore complex. Signal-mediated protein import and passive diffusion are rapidly restored when the drugs depleting lumenal calcium are removed and cells are incubated at 37 degrees C in calcium-containing medium. These results indicate that loss of calcium from the lumen of the endoplasmic reticulum and nuclear envelope reversibly affects properties of pore complex components located on the nuclear/cytoplasmic membrane surfaces, and they provide direct functional evidence for conformational flexibility of the pore complex. These methods will be useful for achieving reversible inhibition of nucleocytoplasmic trafficking for in vivo functional studies, and for studying the structure of the passive diffusion channel(s) of the pore complex.  相似文献   

    10.
    Nuclear pore complexes are constitutive structures of the nuclear envelope in eukaryotic cells and represent the sites where transport of molecules between nucleus and cytoplasm takes place. However, pore complexes of similar structure, but with largely unknown functional properties, are long known to occur also in certain cytoplasmic cisternae that have been termed annulate lamellae (AL). To analyze the capability of the AL pore complex to interact with the soluble mediators of nuclear protein import and their karyophilic protein substrates, we have performed a microinjection study in stage VI oocytes ofXenopus laevis.In these cells AL are especially abundant and can easily be identified by light and electron microscopy. Following injection into the cytoplasm, fluorochrome-labeled mediators of two different nuclear import pathways, importin β and transportin, not only associate with the nuclear envelope but also with AL. Likewise, nuclear localization signals (NLS) of the basic and M9 type, but not nuclear export signals, confer targeting and transient binding of fluorochrome-labeled proteins to cytoplasmic AL. Mutation or deletion of the NLS signals prevents these interactions. Furthermore, binding to AL is abolished by dominant negative inhibitors of nuclear protein import. Microinjections of gold-coupled NLS-bearing proteins reveal specific gold decoration at distinct sites within the AL pore complex. These include such at the peripheral pore complex-attached fibrils and at the central “transporter” and closely resemble those of “transport intermediates” found in electron microscopic studies of the nuclear pore complex (NPC). These data demonstrate that AL can represent distinct sites within the cytoplasm of transient accumulation of nuclear proteins and that the AL pore complex shares functional binding properties with the NPC.  相似文献   

    11.
    The NPC is the portal for the exchange of proteins, mRNA, and ions between nucleus and cytoplasm. Many small molecules (<10 kDa) permeate the nucleus by simple diffusion through the pore, but molecules larger than 70 kDa require ATP and a nuclear localization sequence for their transport. In isolated Xenopus oocyte nuclei, diffusion of intermediate-sized molecules appears to be regulated by the NPC, dependent upon [Ca2+] in the nuclear envelope. We have applied real-time imaging and fluorescence recovery after photobleaching to examine the nuclear pore permeability of 27-kDa EGFP in single intact cells. We found that EGFP diffused bidirectionally via the NPC across the nuclear envelope. Although diffusion is slowed ~100-fold at the nuclear envelope boundary compared to diffusion within the nucleus or cytoplasm, this delay is expected for the reduced cross-sectional area of the NPCs. We found no evidence for significant nuclear pore gating or block of EGFP diffusion by depletion of perinuclear Ca2+ stores, as assayed by a nuclear cisterna-targeted Ca2+ indicator. We also found that EGFP exchange was not altered significantly during the cell cycle.  相似文献   

    12.
    The mechanism by which macromolecules are translocated through the nuclear pore complex (NPC) is little understood. However, recent measurements of nuclear transport in permeabilized cells showed that molecules binding to phenylalanine-glycine-rich repeats (FG repeats) in NPC proteins were translocated much faster through the NPC than molecules not interacting with FG repeats. We have studied that substrate preference of the NPC in isolated oocyte nuclei and purified nuclear envelopes by optical single transporter recording. NTF2, the transport receptor of RanGDP, was exported ~30 times faster than green fluorescent protein, an inert molecule of approximately the same size. The data confirm that restricted diffusion of inert molecules and facilitated transport of FG-repeat binding proteins are basic types of translocation through the NPC, demonstrating that the functional integrity of the NPC can be conserved in isolated nuclei and nuclear envelopes and thus opening new avenues to the analysis of nucleocytoplasmic transport.  相似文献   

    13.
    The cell nucleus is surrounded by a double membrane system, the nuclear envelope (NE), with the outer nuclear membrane being continuous with the endoplasmic reticulum. Nuclear pore complexes (NPCs) fuse the inner and outer nuclear membranes, forming aqueous channels that allow free diffusion of small molecules but that also mediate the energy-dependent transport of large macromolecules. The NPC represents the largest known molecular complex and is composed of about 30 different proteins, termed nucleoporins (Nups). Here, we review recent studies that provide novel insight into the structural and functional organization of nucleocytoplasmic transport. In addition, prospects towards a high resolution model of the nuclear pore are discussed.  相似文献   

    14.
    Bidirectional transport of molecules between nucleus and cytoplasm through the nuclear pore complexes (NPCs) spanning the nuclear envelope plays a fundamental role in cell function and metabolism. Nuclear import of macromolecules is a two-step process involving initial recognition of targeting signals, docking to the pore and energy-driven translocation. ATP depletion inhibits the translocation step. The mechanism of translocation itself and the conformational changes of the NPC components that occur during macromolecular transport, are still unclear. The present study investigates the effect of ATP on nuclear pore conformation in isolated nuclear envelopes from Xenopus laevis oocytes using the atomic force microscope. All experiments were conducted in a saline solution mimicking the cytosol using unfixed nuclear envelopes. ATP (1 mm) was added during the scanning procedure and the resultant conformational changes of the NPCs were directly monitored. Images of the same nuclear pores recorded before and during ATP exposure revealed dramatic conformational changes of NPCs subsequent to the addition of ATP. The height of the pores protruding from the cytoplasmic surface of the nuclear envelope visibly increased while the diameter of the pore opening decreased. The observed changes occurred within minutes and were transient. The slow-hydrolyzing ATP analogue, ATP-γ-S, in equimolar concentrations did not exert any effects. The ATP-induced shape change could represent a nuclear pore ``contraction.' Received: 10 February 1997/Revised: 10 February 1998  相似文献   

    15.
    How nuclear pore complexes, mediating the transport of nucleic acids, proteins, and metabolites between cell nucleus and cytoplasm, are arranged in the nuclear envelope is essentially unknown. Here we describe a method combining high-resolution confocal imaging with image processing and pattern recognition to visualize single nuclear pore complexes (120 nm diameter), determine their relative positions with nanometer accuracy, and analyze their distribution in situ. The method was tested by means of a model system in which the very same sample areas could be imaged by confocal and electron microscopy. It was thus found that single fluorescent beads of 105 nm nominal diameter could be localized with a lateral accuracy of <20 nm and an axial accuracy of approximately 20 nm. The method was applied to digitonin-permeabilized 3T3 cells, whose nuclear pore complexes were fluorescently labeled with the anti-nucleoporin antibody mAb414. Stacks of optical sections were generated by confocal imaging at high resolution. Herein the nuclear pore complexes appeared as bright diffraction-limited spots whose centers were localized by fitting them by three-dimensional gaussians. The nearest-neighbor distribution function and the pair correlation function were calculated and found to agree well with those of randomly distributed hard cylinders of 138 +/- 17 nm diameter, but not with those of randomly distributed points or nonrandomly distributed cylinders. This was supported by a cluster analysis. Implications for the direct observation of the transport of single particles and molecules through individual nuclear pore complexes are discussed.  相似文献   

    16.
    In eukaryotic cells, both soluble transport factors and components of the nuclear pore complex mediate protein and RNA trafficking between the nucleus and the cytoplasm. Here, we investigated whether caspases, the major execution system in apoptosis, target the nuclear pore or components of the nuclear transport machinery. Four nucleoporins, Nup153, RanBP2, Nup214 and Tpr are cleaved by caspases during apoptosis. In contrast, the nuclear transport factors, Ran, importin alpha and importin beta are not proteolytically processed, but redistribute across the nuclear envelope independently and prior to caspase activation. Also, mRNA accumulates into the nucleus before caspases become active. Microinjection experiments further revealed that early in apoptosis, the nucleus becomes permeable to dextran molecules of 70 kD molecular weight. Redistribution of import factors and mRNA, as well as nuclear permeabilisation, occur prior to caspase-mediated nucleoporin cleavage. Our findings suggest that the apoptotic programme includes modifications in the machinery responsible for nucleocytoplasmic transport, which are independent from caspase-mediated degradation of nuclear proteins.  相似文献   

    17.
    The trafficking of macromolecules between cytoplasm and nucleus through nuclear pore complexes is mediated by specific carrier molecules such as members of the importin-beta family. Nuclear pore proteins (nucleoporins) frequently contain sequence repeats based on FG cores and carriers appear to move their cargo through the pores by hopping between successive FG cores. A major question is why some macromolecules are transported while others are not. This selectivity may be generated by the ability to bind FG repeats, a local concentration of carrier-cargo complexes near the entrance to the pore channel, and steric hindrance produced by high concentrations of nucleoporins in the channel.  相似文献   

    18.
    Conformational changes of the in situ nuclear pore complex.   总被引:6,自引:0,他引:6       下载免费PDF全文
    By bridging the double membrane separating the cell nucleus and cytoplasm, nuclear pore complexes (NPCs) are crucial pathways for the exchange of ions, proteins, and RNA between these two cellular compartments. A structure in the central lumen of the NPC, called the nuclear transport protein, central granule, or nuclear plug, appeared to gate diffusion of intermediate-sized molecules (10-40 kDa) across the nuclear membranes. Visualization of the NPC required drying and fixation of the specimen for electron and atomic force microscopy (AFM), a requirement that has raised doubts about the physiological relevance of the observation. Here we present AFM images of the outer nuclear membranes and NPCs of Xenopus laevis oocytes under more physiological conditions. Measured under a variety of Ca2+ depletion conditions, the central granule appeared to occupy and occlude the lumen of the pore in >80% of NPCs compared to <10% in controls. In a few instances images were obtained of the same NPCs as the solution was changed from control saline to store depletion conditions, and finally to store repletion conditions. We conclude that the central lumen of the nuclear pore complex undergoes a conformational change in response to depletion of nuclear cisternal Ca2+ levels.  相似文献   

    19.
    Although it is known that mechanical stretching of cells can induce significant increases in cell growth and shape, the intracellular signaling pathways that induce this response at the level of the cell nucleus is unknown. The transport of molecules from the cell cytoplasm to the nucleoplasm through the nuclear pore is a key pathway through which gene expression can be controlled in some conditions. It is presently unknown if mechanical stimuli can induce changes in nuclear pore expression and/or function. The purpose of the present investigation was to determine if mechanical stretching of a cell will alter nuclear protein import and the mechanisms that may be responsible. Vascular smooth muscle cells that were mechanically stretched exhibited an increase in proliferating cell nuclear antigen expression, cell number, and cell size within 24-48 h. Cells were microinjected with marker proteins for nuclear import. Nuclear protein import was significantly stimulated in stretched cells when compared with control. This was associated with an increase in the expression of nuclear pore proteins as detected by Western blots. Inhibition of the MAPK pathway blocked the stretch-induced stimulation of both cell proliferation and nuclear protein import. We conclude that nuclear protein import and nuclear pore density can adapt to mechanical stimuli during the process of cell growth through a MAPK-mediated mechanism.  相似文献   

    20.
    The cilium is a microtubule-based organelle that contains a unique complement of proteins for cell motility and signalling functions. Entry into the ciliary compartment is proposed to be regulated at the base of the cilium. Recent work demonstrated that components of the nuclear import machinery, including the Ran GTPase and importins, regulate ciliary entry. We hypothesized that the ciliary base contains a ciliary pore complex whose molecular nature and selective mechanism are similar to those of the nuclear pore complex. By microinjecting fluorescently labelled dextrans and recombinant proteins of various sizes, we characterize a size-dependent diffusion barrier for the entry of cytoplasmic molecules into primary cilia in mammalian cells. We demonstrate that nucleoporins localize to the base of primary and motile cilia and that microinjection of nucleoporin-function-blocking reagents blocks the ciliary entry of kinesin-2 KIF17 motors. Together, this work demonstrates that the physical and molecular nature of the ciliary pore complex is similar to that of the nuclear pore complex, and further extends functional parallels between nuclear and ciliary import.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号