首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The yeast REV3 gene encodes the catalytic subunit of DNA polymerase zeta (pol zeta), a B family polymerase that performs mutagenic DNA synthesis in cells. To probe pol zeta mutagenic functions, we generated six mutator alleles of REV3 with amino acid replacements for Leu979, a highly conserved residue inferred to be at the pol zeta active site. Replacing Leu979 with Gly, Val, Asn, Lys, Met or Phe resulted in yeast strains with elevated UV-induced mutant frequencies. While four of these strains had reduced survival following UV irradiation, the rev3-L979F and rev3-L979M strains had normal survival, suggesting retention of pol zeta catalytic activity. UV mutagenesis in the rev3-L979F background was increased when photoproduct bypass by pol eta was eliminated by deletion of RAD30. The rev3-L979F mutation had little to no effect on mutagenesis in an ogg1Delta background, which cannot repair 8-oxo-guanine in DNA. UV-induced can1 mutants from rev3-L979F and rad30Deltarev3-L979F strains primarily contained base substitutions and complex mutations, suggesting error-prone bypass of UV photoproducts by L979F pol zeta. Spontaneous mutation rates in rev3-L979F and rev3-L979M strains are elevated by about two-fold overall and by two- to eight-fold for C to G transversions and complex mutations, both of which are known to be generated by wild-type pol zetain vitro. These results indicate that Rev3p-Leu979 replacements reduce the fidelity of DNA synthesis by yeast pol zetain vivo. In conjunction with earlier studies, the data establish that the conserved amino acid at the active site location occupied by Leu979 is critical for the fidelity of all four yeast B family polymerases. Reduced fidelity with retention of robust polymerase activity suggests that the homologous rev3-L979F allele may be useful for analyzing pol zeta functions in mammals, where REV3 deletion is lethal.  相似文献   

2.
Kim N  Mudrak SV  Jinks-Robertson S 《DNA Repair》2011,10(12):1262-1271
The bypass of AP sites in yeast requires the Rev1 protein in addition to the Pol ζ translesion synthesis DNA polymerase. Although Rev1 was originally characterized biochemically as a dCMP transferase during AP-site bypass, the relevance of this activity in vivo is unclear. The current study uses highly sensitive frameshift- and nonsense-reversion assays to monitor the bypass of AP sites created when uracil is excised from chromosomal DNA. In the frameshift-reversion assay, an unselected base substitution frequently accompanies the selected mutation, allowing the relative incorporation of each of the four dNMPs opposite endogenously created AP sites to be inferred. Results with this assay suggest that dCMP is the most frequent dNMP inserted opposite uracil-derived AP sites and demonstrate that dCMP insertion absolutely requires the catalytic activity of Rev1. In the complementary nonsense-reversion assay, dCMP insertion likewise depended on the dCMP transferase activity of Rev1. Because dAMP insertion opposite uracil-derived AP sites does not revert the nonsense allele and hence could not be detected, it also was possible to detect low levels of dGMP or dTMP insertion upon loss of Rev1 catalytic activity. These results demonstrate that the catalytic activity of Rev1 is biologically relevant and is required specifically for dCMP insertion during the bypass of endogenous AP sites.  相似文献   

3.
DNA damage tolerance (DDT) mechanisms allow cells to synthesize a new DNA strand when the template is damaged. Many mutations resulting from DNA damage in eukaryotes are generated during DDT when cells use the mutagenic translesion polymerases, Rev1 and Polζ, rather than mechanisms with higher fidelity. The coordination among DDT mechanisms is not well understood. We used live-cell imaging to study the function of DDT mechanisms throughout the cell cycle of the fission yeast Schizosaccharomyces pombe. We report that checkpoint-dependent mitotic delay provides a cellular mechanism to ensure the completion of high fidelity DDT, largely by homology-directed repair (HDR). DDT by mutagenic polymerases is suppressed during the checkpoint delay by a mechanism dependent on Rad51 recombinase. When cells pass the G2/M checkpoint and can no longer delay mitosis, they completely lose the capacity for HDR and simultaneously exhibit a requirement for Rev1 and Polζ. Thus, DDT is coordinated with the checkpoint response so that the activity of mutagenic polymerases is confined to a vulnerable period of the cell cycle when checkpoint delay and HDR are not possible.  相似文献   

4.
Murakumo Y 《Mutation research》2002,510(1-2):37-44
Translesion DNA synthesis (TLS) is an important damage tolerance system which rescues cells from severe injuries caused by DNA damage. Specialized low fidelity DNA polymerases in this system synthesize DNA past lesions on the template DNA strand, that replicative DNA polymerases are usually unable to pass through. However, in compensation for cell survival, most polymerases in this system are potentially mutagenic and sometimes introduce mutations in the next generation. In yeast Saccharomyces cerevisiae (S. cerevisiae), DNA polymerase ζ, which consists of Rev3 and Rev7 proteins, and Rev1 are known to be involved in most damage-induced and spontaneous mutations. The human homologs of S. cerevisiae REV1, REV3, and REV7 were identified, and it is revealed that the human REV proteins have similar functions to their yeast counterparts, however, a large part of the mechanisms of mutagenesis employing REV proteins are still unclear. Recently, the new findings about REV proteins were reported, which showed that REV7 interacts not only with REV3 but also with REV1 in human and that REV7 is involved in cell cycle control in Xenopus. These findings give us a new point of view for further investigation about REV proteins. Recent studies of REV proteins are summarized and several points are discussed.  相似文献   

5.
Genomic DNA is constantly assaulted by both endogenous and exogenous damaging agents. The resulting DNA damage, if left unrepaired, can interfere with DNA replication and be converted into mutations. Genomic DNA is packaged into a highly compact yet dynamic chromatin structure, in order to fit into the limited space available in the nucleus of eukaryotic cells. This hierarchical chromatin organization serves as both the target of DNA damaging agents and the context for DNA repair enzymes. Biochemical studies have suggested that both the formation and repair of DNA damage are significantly modulated by chromatin. Our understanding of the impact of chromatin on damage and repair has been significantly enhanced by recent studies. We focus on the nucleosome, the primary building block of chromatin, and discuss how the intrinsic structural properties of nucleosomes, and their associated epigenetic modifications, affect damage formation and DNA repair, as well as subsequent mutagenesis in cancer.  相似文献   

6.
Human immunodeficiency virus type-1 (HIV-1) Rev acts by inducing the specific nucleocytoplasmic transport of a class of incompletely spliced RNAs that encodes the viral structural proteins. The transfection of HeLA cells with a rev-defective HIV-1 expression plasmid, however, resulted in the export of overexpressed, intron-containing species of viral RNAs, possibly through a default process of nuclear retention. Thus, this system enabled us to directly compare Rev+ and Rev cells as to the usage of RRE-containing mRNAs by the cellular translational machinery. Biochemical examination of the transfected cells revealed that although significant levels of gag and env mRNAs were detected in both the presence and absence of Rev, efficient production of viral proteins was strictly dependent on the presence of Rev. A fluoroscence in situ hybridisation assay confirmed these findings and provided further evidence that even in the presence of Rev, not all of the viral mRNA was equally translated. At the early phase of RNA export in Rev+ cells, gag mRNA was observed throughout both the cytoplasm and nucleoplasm as uniform fine stippling. In addition, the mRNA formed clusters mainly in the perinuclear region, which were not observed in Rev cells. In the presence of Rev, expression of the gag protein was limited to these perinuclear sites where the mRNA accumulated. Subsequent staining of the cytoskeletal proteins demonstrated that in Rev+ cells gag mRNA is colocalized with β-actin in the sites where the RNA formed clusters. In the absence of Rev, in contrast, the gag mRNA failed to associate with the cytoskeletal proteins. These results suggest that in addition to promoting the emergence of intron-containing RNA from the nucleus, Rev plays an important role in the compartmentation of translation by directing RRE-containing mRNAs to the β-actin to form the perinuclear clusters at which the synthesis of viral structural proteins begins.  相似文献   

7.
Translesion synthesis (TLS) is the mechanism in which DNA polymerases (TLS polymerases) bypass unrepaired template damage with high error rates. DNA polymerase η and ζ (Polη and Polζ) are major TLS polymerases that are conserved from yeast to humans. In this study, we quantified frequencies of base-substitutions by yeast Polη and Polζ on undamaged and abasic templates in vitro. For accurate quantification, we used a next generation sequencing (NGS)-based method where DNA products were directly analyzed by parallel sequencing. On undamaged templates, Polη and Polζ showed distinct base-substitution profiles, and the substitution frequencies were differently influenced by the template sequence. The base-substitution frequencies were influenced mainly by the adjacent bases both upstream and downstream of the substitution sites. Thus we present the base-substitution signatures of these polymerases in a three-base format. On templates containing abasic sites, Polη created deletions at the lesion in more than 50% of the TLS products, but the formation of the deletions was suppressed by the presence of Polζ. Polζ and Polη cooperatively facilitated the TLS reaction over an abasic site in vitro, suggesting that these two polymerases can cooperate in efficient and high fidelity TLS.  相似文献   

8.
The Bacillus sp. SAM1606 α-glucosidase catalyzes the transglucosylation of sucrose to produce theanderose (6-OG-glucosylsucrose) as the major transfer product along with the other di-, tri-, and tetrasaccharides. To obtain an α-glucosidase variant(s) producing theanderose more abundantly, we carried out site-specific mutagenesis studies, in which an amino acid residue (Gly273 or Thr272) near the putative catalytic site (Glu271) of this α-glucosidase was replaced by all other naturally-occurring amino acids. Each mutant, whose concentration was set at 2.6 U/ml (sucrose-hydrolyzing units), was reacted at 60 °C and pH 6.0 with 1.75 M sucrose, and the course of the oligosaccharide production was monitored by HPLC to systematically analyze the effects of amino acid substitutions on the specificity of transglucosylation. The analysis clearly showed site- and residue-dependent differential effects of substitution near the catalytic site on the specificity of oligosaccharide production. For example, mutants with substitution at position 273 by aromatic amino acids or His virtually lost the ability to produce oligosaccharides by transglucosylation. Mutants with substitution at position 272 by amino acids that were bulkier than the wild-type Thr showed enhanced production of tetrasaccharides; whereas, mutants with substitution at position 273 by Lys and Arg exclusively produced disaccharidal transfer products. The highest specificity for theanderose formation (i.e. the highest content of theanderose in the reaction product) was obtained with the T272I mutant, which showed 1.74 times higher productivity (per sucrose-hydrolyzing unit) of theanderose than that of the wild-type enzyme.  相似文献   

9.
One skin cancer prevention strategy that we are developing is based on synthesizing and testing melanocortin analogs that reduce and repair DNA damage resulting from exposure to solar ultraviolet (UV) radiation, in addition to stimulating pigmentation. Previously, we reported the effects of tetrapeptide analogs of α‐melanocortin (α‐MSH) that were more potent and stable than the physiological α‐MSH, and mimicked its photoprotective effects against UV‐induced DNA damage in human melanocytes. Here, we report on a panel of tripeptide analogs consisting of a modified α‐MSH core His6‐d ‐Phe7‐Arg8, which contained different N‐capping groups, C‐terminal modifications, or arginine mimics. The most potent tripeptides in activating cAMP formation and tyrosinase of human melanocytes were three analogs with C‐terminal modifications. The most effective C‐terminal tripeptide mimicked α‐MSH in reducing hydrogen peroxide generation and enhancing nucleotide excision repair following UV irradiation. The effects of these three analogs required functional MC1R, as they were absent in human melanocytes that expressed non‐functional receptor. These results demonstrate activation of the MC1R by tripeptide melanocortin analogs. Designing small analogs for topical delivery should prove practical and efficacious for skin cancer prevention.  相似文献   

10.
11.
In eukaryotic cells, DNA damage triggers activation of checkpoint signaling pathways that coordinate cell cycle arrest and repair of damaged DNA. These DNA damage responses serve to maintain genome stability and prevent accumulation of genetic mutations and development of cancer. The p38 MAPK was previously implicated in cellular responses to several types of DNA damage. However, the role of each of the four p38 isoforms and the mechanism for their involvement in DNA damage responses remained poorly understood. In this study, we demonstrate that p38γ, but not the other p38 isoforms, contributes to the survival of UV-treated cells. Deletion of p38γ sensitizes cells to UV exposure, accompanied by prolonged S phase cell cycle arrest and increased rate of apoptosis. Further investigation reveal that p38γ is essential for the optimal activation of the checkpoint signaling caused by UV, and for the efficient repair of UV-induced DNA damage. These findings have established a novel role of p38γ in UV-induced DNA damage responses, and suggested that p38γ contributes to the ability of cells to cope with UV exposure by regulating the checkpoint signaling pathways and the repair of damaged DNA.  相似文献   

12.
Xeroderma pigmentosum variant (XP-V) cells lack the damage-specific DNA polymerase eta and have normal excision repair but show defective DNA replication after UV irradiation. Previous studies using cells transformed with SV40 or HPV16 (E6/E7) suggested that the S-phase response to UV damage is altered in XP-V cells with non-functional p53. To investigate the role of p53 directly we targeted p53 in normal and XP-V fibroblasts using short hairpin RNA. The shRNA reduced expression of p53, and the downstream cell cycle effector p21, in control and UV irradiated cells. Cells accumulated in late S phase after UV, but after down-regulation of p53 they accumulated earlier in S. Cells in which p53 was inhibited showed ongoing genomic instability at the replication fork. Cells exhibited high levels of UV induced S-phase gammaH2Ax phosphorylation representative of exposed single strand regions of DNA and foci of Mre11/Rad50/Nbs1 representative of double strand breaks. Cells also showed increased variability of genomic copy numbers after long-term inhibition of p53. Inhibition of p53 expression dominated the DNA damage response. Comparison with earlier results indicates that in virally transformed cells cellular targets other than p53 play important roles in the UV DNA damage response.  相似文献   

13.
A series of 2-methyl-5-nitrobenzenesulfonohydrazides were prepared and evaluated as inhibitors of PI3K. An isoquinoline derivative shows good selectivity for the p110α isoform over p110β and p110δ, and also demonstrates good in vitro activity in a cell proliferation assay. Molecular modelling provides a rationalisation for the observed SAR.  相似文献   

14.
The translesion synthesis (TLS) DNA polymerases Rev1 and Polζ function together in DNA lesion bypass during DNA replication, acting as nucleotide inserter and extender polymerases, respectively. While the structural characterization of the Saccharomyces cerevisiae Polζ in its DNA-bound state has illuminated how this enzyme synthesizes DNA, a mechanistic understanding of TLS also requires probing conformational changes associated with DNA- and Rev1 binding. Here, we used single-particle cryo-electron microscopy to determine the structure of the apo Polζ holoenzyme. We show that compared with its DNA-bound state, apo Polζ displays enhanced flexibility that correlates with concerted motions associated with expansion of the Polζ DNA-binding channel upon DNA binding. We also identified a lysine residue that obstructs the DNA-binding channel in apo Polζ, suggesting a gating mechanism. The Polζ subunit Rev7 is a hub protein that directly binds Rev1 and is a component of several other protein complexes such as the shieldin DNA double-strand break repair complex. We analyzed the molecular interactions of budding yeast Rev7 in the context of Polζ and those of human Rev7 in the context of shieldin using a crystal structure of Rev7 bound to a fragment of the shieldin-3 protein. Overall, our study provides new insights into Polζ mechanism of action and the manner in which Rev7 recognizes partner proteins.  相似文献   

15.
Epithelial‐mesenchymal transition (EMT) has been contributed to increase migration and invasion of cancer cells. However, the correlate of Naa10p and IKKα with EMT in oral squamous cell carcinoma (OSCC) is not yet fully understood. In our present study, we found N‐α‐acetyltransferase 10 protein (Naa10p) and IκB kinase α (IKKα) were abnormally abundant in oral squamous cell carcinoma (OSCC). Bioinformatic results indicate that the expression of Naa10p and IKKα is correlated with TGF‐β1/Smad and EMT‐related molecules. The Transwell migration, invasion, qRT‐PCR and Western blot assay indicated that Naa10p repressed OSCC cell migration, invasion and EMT, whereas IKKα promoted TGF‐β1–mediated OSCC cell migration, invasion and EMT. Mechanistically, Naa10p inhibited IKKα activation of Smad3 through the interaction with IKKα directly in OSCC cells after TGF‐β1 stimulation. Notably, knockdown of Naa10p reversed the IKKα‐induced change in the migration, invasion and EMT‐related molecules in OSCC cells after TGF‐β1 stimulation. These findings suggest that Naa10p interacted with IKKα mediates EMT in OSCC cells through TGF‐β1/Smad, a novel pathway for preventing OSCC.  相似文献   

16.
Maternal metabolic adaptations are essential to ensure proper fetal development. According to changes in insulin sensitivity, pregnancy can be divided into two periods: early pregnancy, characterized by an increase in maternal insulin sensitivity, and late pregnancy, in which there is a significant increase in insulin resistance. The aims of the present work were two-fold: firstly, the molecular mechanisms associated with the development of pregnancy-related insulin resistance in peripheral tissues, mainly retroperitoneal adipose tissue and skeletal muscle, were studied in pregnant rats at 6, 11, and 16 days gestation. Secondly, the role of 17β-estradiol in this process was elucidated in an animal model consisting of ovariectomized rats treated with 17β-estradiol to mimic plasma gestational levels. The results support the conclusion that retroperitoneal adipose tissue plays a pivotal role in the decrease in insulin sensitivity during pregnancy, through a mechanism that involves p85α redistribution to the insulin receptor and impairment of Glut4 translocation to the plasma membrane. Treatment with 17β-estradiol did not reproduce the molecular adaptations that occur during pregnancy, suggesting that other hormonal factors presents in gestation but absent in our experimental model are responsible for p85α redistribution to the insulin receptor.  相似文献   

17.
Soluble forms of the two molecular species of the cell surface TNF receptors (sTNFR p55 and sTNFR p75) can reduce the activity of TNFα but they may also enhance its function by stabilizing the active TNFα oligomer. Considering the pathophysiological importance of sTNFR p75 for the regulation of the bioavailability of TNFα in the body, we determined the serum levels of sTNFR p75 and TNFα in 45 children and 28 adults with laboratory-confirmed dengue infection by using immunoassays. The serum samples were obtained from day 1 to day 15 after the onset of the disease during the 1989–1990 outbreak of dengue-3 in Tahiti, French Polynesia. The patients were clinically classified as having dengue hemorrhagic fever (DHF) and graded according to the criteria of the World Health Organization (WHO) into four grades from less severe (grade I) to severe (grade IV). The sera of both children and adult patients of all severity grades contained higher levels of sTNFR p75 than the sera of control subjects. Although high levels of TNFα were also detected in children and adults among grade I, II, III and IV patients, we found no correlation between sTNFR p75 and TNFα. We observed in adults a moderate elevation of sTNFR p75 and TNFα in sera compared with that observed in children. The raised levels of immunoreactive sTNFR p75 and TNFα in all clinical groups of dengue-infected patients strongly indicate activation of the TNFα system during dengue infection. The balance between sTNFR p75 and TNFα may be altered in dengue infection. Further investigations are needed to understand the role of sTNFR p75 and TNFα in the pathogenesis of DHF and to improve the management of dengue infection.  相似文献   

18.
19.
20.
The aim of this study was to investigate the neuroprotective effects of quercetin in mouse models of traumatic brain injury (TBI) and the potential role of the PGC‐1α pathway in putative neuroprotection. Wild‐type mice were randomly assigned to four groups: the sham group, the TBI group, the TBI+vehicle group and the TBI+quercetin group. Quercetin, a dietary flavonoid used as a food supplement, significantly reduced TBI‐induced neuronal apoptosis and ameliorated mitochondrial lesions. It significantly accelerated the translocation of PGC‐1α protein from the cytoplasm to the nucleus. In addition, quercetin restored the level of cytochrome c, malondialdehyde and superoxide dismutase in mitochondria. Therefore, quercetin administration can potentially attenuate brain injury in a TBI model by increasing the activities of mitochondrial biogenesis via the mediation of the PGC‐1α pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号