首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While anther culture or pollinations with Hordeum bulbosum have provided suitable methods for haploid production in bread wheat, they have been largely unsuccessful in durum wheat. Pollinations with maize were used in an attempt to produce haploid seedlings and, from these, fertile doubled haploids of durum wheats. Moreover, the effect of various concentrations and combinations of a synthetic auxin, 2, 4-dichlorophenoxyacetic acid (2,4-D), kinetin, and an ethylene inhibitor, silver nitrate (AgNO3), on embryo recovery were also investigated. Haploid seedlings were recovered from Triticum turgidum ssp. turgidum cv Rampton Rivet pollinated with maize following in-vivo treatment of ovaries with 2,4-D for 2 weeks and subsequent embryo culture. The recovery of haploid seedlings from T. turgidum ssp. durum cv. Wakona pollinated with maize necessitated the addition of AgNO3, to the 2,4-D treatment. Overall, haploid seedlings were produced in 1.7% and 3.3% of pollinated florets for Rampton Rivet and Wakona respectively. The success of the present work represents a significant breakthrough for haploid production in durum wheats. Wide hybridization with maize followed by in-vivo treatment of ovaries with 2,4-D alone, or in combination with AgNO3, may provide a widely-applicable method of haploid production in tetraploid wheats.  相似文献   

2.
Summary A high efficiency of Hordeum bulbosum-mediated haploid production in barley has been achieved using a floret culture technique in which florets pollinated with Hordeum bulbosum are cultured on modified N6 media containing 0.5 mg/l kinetin and 1.2 mg/l2,4-D. Cultures were maintained at 25 °C with a 16 h photoperiod for 9 days before embryo rescue. In a comparison of haploid production efficiency using five F1 hybrids from winter x winter and winter x spring barley crosses, 41.6 haploid plants/100 florets pollinated were produced using floret culture. Using detached tiller culture, 13.5 haploid plants/100 florets pollinated were produced. Higher efficiencies achieved with floret culture are attributed to the formation of larger, differentiated embryos. Such embryos lead to higher frequencies of plant regeneration. The F1 from a winter x winter cross was inferior in haploid production compared to F1s from winter x spring crosses. No genotype x technique interaction was observed.Oregon Agricultural Experiment Station Technical Paper No. 8653  相似文献   

3.
Anther culture–derived haploid embryos were used as explants for Agrobacterium‐mediated genetic transformation of bread wheat (Triticum aestivum L. cv CPAN1676) using barley HVA1 gene for drought tolerance. Regenerated plantlets were checked for transgene integration in T0 generation, and positive transgenic haploid plants were doubled by colchicine treatment. Stable transgenic doubled haploid plants were obtained, and transgene expression was monitored till T4 generation, and no transgene silencing was observed over the generations. Doubled haploid transgenic plants have faster seed germination and seedling establishment and show better drought tolerance in comparison with nontransgenic, doubled haploid plants, as measured by per cent germination, seedling growth and biomass accumulation. Physiological evaluation for abiotic stress by assessing nitrate reductase enzyme activity and plant yield under post‐anthesis water limitation revealed a better tolerance of the transgenics over the wild type. This is the first report on the production of double haploid transgenic wheat through anther culture technique in a commercial cultivar for a desirable trait. This method would also be useful in functional genomics of wheat and other allopolyploids of agronomic importance.  相似文献   

4.
The wheat x maize cross as a technique for haploid induction in wheat was evaluated in a replicated block design comprising 18 wheat F1 hybrids and five Zea mays L. parents. Haploid plants were regenerated at an average of 9.1 (4.4–14.7) plants per 100 florets processed. Genotypic differences for haploid production efficiency were recorded for both wheat and Zea mays L. Interaction between parents was significant for number of plants/100 florets. All 610 of the 1,703 regenerated plantlets that were analyzed by flow cytometry were haploid. At maturity, 70% (60–81 %) of the colchicinetreated haploid plants were fertile, but the frequency of fertile and sterile plants was not consistent over the wheat hybrids from which they were derived. Flow cytometry performed using the first tiller which arose following colchicine treatment enabled prediction of fertility. The 1BL-1RS chromosome was found at the expected ratios in the F2 and in the haploid progenies produced through the wheat x maize cross but deviated from the 11 ratio in the haploid progenies produced by anther culture.  相似文献   

5.
In vivo haploid induction has been extended from maize to monocotyledonous plants like rice, wheat, millet and dicotyledonous plants such as tomato, rapeseed, tobacco and cabbage. Accurate identification of haploids is a crucial step of doubled haploid technology, where a useful identification marker is very pivotal. R1-nj is an extensively used visual marker for haploid identification in maize. RFP and eGFP have been shown to be feasible in identifying haploid. However, these methods are either limited to specific species, or require specific equipment. It still lacks an efficient visual marker that is practical across different crop species. In this study, we introduced the RUBY reporter, a betalain biosynthesis system, into maize and tomato haploid inducers as a new marker for haploid identification. Results showed that expression of RUBY could result in deep betalain pigmentation in maize embryos as early as 10 days after pollination, and enabled 100% accuracy of immature haploid embryo identification. Further investigation in tomato revealed that the new marker led to deep red pigmentation in radicles and haploids can be identified easily and accurately. The results demonstrated that the RUBY reporter is a background-independent and efficient marker for haploid identification and would be promising in doubled haploid breeding across different crop species.  相似文献   

6.
Summary Hybrid embryos from hexaploid wheat x maize crosses rapidly lose the maize chromosomes to produce haploid wheat embryos. Such embryos almost always aborted when left to develop on the plant, and only 1 was recovered from 2440 florets (0.17% of the expected number). Embryos had greater viability in spikelet culture, 47 (26.5% of the expected number) being recovered from 706 ovaries. Thirty-two of these embryos germinated to give green plants, 31 of which were haploid (21 wheat chromosomes) and 1 of which was euploid (42 wheat chromosomes). Spikelet culture enabled 17.1% of the expected number of embryos to be recovered as haploid plants, a 100-fold improvement on allowing embryos to develop in vivo. Ten haploid plants of Chinese Spring (kr1, kr2), 13 plants of Chinese Spring (Hope 5A) (kr1, Kr2), and 8 of Hope (Kr1, Kr2) were recovered. The potential of wheat x maize crosses for wheat haploid production and for gene transfer from maize to wheat is discussed.  相似文献   

7.
In this work, we describe an improved protocol for induced parthenogenesis and ovule culture of carrot (Daucus carota L.). The effects of pollination with parsley pollen and/or 2,4-dichlorophenoxyacetic acid (2,4-D) treatment on the stimulation of parthenogenesis were studied using heterozygous donor plants of 30 varieties and breeding populations of carrots. Isolated ovules, cultured in vitro, enlarged and developed embryos or calli. The application of 2,4-D on pollinated flowers stimulated callus development but did not increase the frequency of embryo development from ovules and, thus, was not useful for increasing the frequency of haploid plant recovery. The efficiency of embryo development was accession-dependent and varied from 0 to 24.29%. In optimized conditions, most accessions responded by embryo development exclusively. The highest frequency of embryo development was observed from ovules excised from ovaries 20–22 d after pollination with parsley pollen. Among several media used for ovule culture, 1/2-strength Murashige and Skoog medium with 0.06 μM indole-3-acetic acid (IAA) was the best. It allowed the production of embryos at a similar frequency as on the media supplemented with kinetin, gibberellic acid, putrescine, or thidiazuron, but restricted callus development. Most plants obtained were haploids and diploids derived from parthenogenesis, as evidenced by homozygosity at three independent loci based on isozyme and PCR analyses. In total, considering haploids and embryo-derived homozygous diploids together, 72.6% of regenerated plants were of gametic origin.  相似文献   

8.
Summary A chromosome doubling technique, involving colchicine treatment of an embryogenic, haploid callus line of maize (Zea mays L., derived through anther culture), was evaluated. Two colchicine levels (0.025% and 0.05%) and three treatment durations (24, 48, and 72 h) were used and compared to untreated controls. Chromosome counts and seed recovery from regenerated plants were determined. No doubled haploid plants were regenerated from calli without colchicine treatment. After treatment with colchicine for 24 h, the callus tissue regenerated about 50% doubled haploid plants. All of the plants regenerated from the calli treated with colchicine for 72 h were doubled haploids, except for a few tetraploid plants. No significant difference in chromosome doubling was observed between the two colchicine levels. Most of the doubled haploid plants produced viable pollen and a total of 107 of 136 doubled haploid plants produced from 1 to 256 seeds. Less extensive studies with two other genotypes gave similar results. These results demonstrate that colchicine treatment of haploid callus tissue can be a very effective and relatively easy method of obtaining a high frequency of doubled haploid plants through anther culture.  相似文献   

9.

The development of embryos requires interaction of many endogenous hormones. The aim of the study was to determine which endogenous phytohormones are involved in the process of oat (Avena sativa L.) haploidization. Oat haploids were obtained by wide crossing with Zea mays L. The hormonal profiles of the ovaries with (OE) and without developed embryo (OWE) were compared. Phytohormone contents were measured by UHPLC coupled with mass spectrometer. The total content of indole-3-acetic acid (IAA), trans-zeatin (tZ), and kinetin (KN) in OE was significantly higher than in OWE. 4-Chloroindole-3-acetic acid was detected only in OWE. There were no differences between OE and OWE in the content of gibberellins (GA1, GA3, GA4, GA6, GA7) and stress hormones (abscisic, salicylic, jasmonic acids). Content of endogenous KN was highly negatively correlated with the percentage of haploid embryos, germinated haploid embryos, haploid plants on MS (in vitro), haploid plants in soil (ex vitro), and doubled haploid lines. The tZ content negatively correlated with the frequency of haploid embryo formation, germination, and haploid plants obtained in vitro, as opposed to GA1, which correlated positively. A positive correlation was found between IAA and tZ in OE, whereas in OWE it was a negative correlation. The profiles of phytohormones in OE and OWE were determined; however, their mode of action needs to be clarified.

  相似文献   

10.
Exogenous plant growth regulators are known to increase the efficiency of interspecific and intergeneric crosses. In vitro floret culture provides a defined system for assessing the importance of various plant growth regulators on the determinants of haploid production efficiency (seed set, embryos per seeds, and plants per embryos) in Hordeum vulgare × Hordeum bulbosum crosses. The individual and combined effects of three plant growth regulators (2,4-D, GA3 and kinetin) on in vitro seed growth, embryo development and haploid production efficiency were tested in floret culture of the cross H. vulgare, cultivar Klages × H. bulbosum. All treatments, except kinetin alone, produced larger seeds and more embryos/100 seeds than the control (no plant growth regulator). 2,4-D alone was superior to GA3 alone in haploid production efficiency (70.6 vs. 51.5) as measured by the number of plants regenerated/100 florets pollinated. Although kinetin +2,4-D+GA3 produced the largest seeds and embryos, no advantage over 2,4-D alone was observed in haploid production efficiency. 2,4-D alone or kinetin +2,4-D are recommended for the purpose of barley haploid production in floret culture using the bulbosum method.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid  相似文献   

11.
  • Haploid induction (HI) can create true-breeding lines in a single generation, which can significantly accelerates the breeding process. In recent years, scientists have developed a variety of new techniques to induce haploids through manipulation of CENH3, a variant of the centromere-specific histone H3. One alternative approach is based on CENH3 point mutations derived from EMS/TILLING, which is not lethal and yet is responsible for inducing haploids. However, most residues have been obtained by EMS mutagenesis over a long period of time.
  • Recently, a new approach called ‘base editing’ was developed for plants. Here, we report a new method that uses a cytosine base editor (CBE) to create a point mutation of CENH3 as a haploid induction line, which substitutes adenine (A) for guanine (G).
  • As proof of the extreme simplicity of this approach to create haploid-induced lines, we identified an L130F substitution within the histone fold domain in Arabidopsis thaliana. Subsequently, we tested the haploid-inducing potential of homozygous L130F plants by pollinating them with Col-0, and obtained 2.9% paternal haploid plants.
  • In brief, our innovative technology provides a new perspective for the promotion of CENH3-mediated haploid induction in crops, and also provides a variety of options for breeders. Such conserved point mutations as L130F could be developed into a general instrument for haploid induction in a wide range of plant species. Extending these systems would represent a major advance over haploid production.
  相似文献   

12.
The results of anther culture of F2 pollen issued from 23 single crosses are presented. A relation between the morphology of the panicle and the microspore stage was established. After cold-pretreatment (8 days at 4°C), the anthers were cultured on the callus-induction medium N6 supplemented with 1 mg l–1 naphthaleneacetic acid. The calli were transferred to MS plant regeneration medium supplemented with 3 mg l–1 kinetin + 0.5 mg l–1 naphthaleneacetic acid. The induction frequency varied from 0.22% to 29% and the regeneration frequency from 0% to 144.4%, dependent upon the crosses used. On average, 27% of the plants obtained were albinos and 59% of the green plants underwent spontaneous chromosome doubling. Thirtynine doubled haploid lines were evaluated and multiplied in the field. Lines with an excellent behaviour in upland culture conditions were selected from two crosses.  相似文献   

13.
The induction of haploid plants by in vitro gynogenesis is a promising practice in onion breeding. In order to increase the frequency of embryo regeneration and haploid plant production in Valcatorce INTA, Cobriza INTA and Navidena INTA cultivars, putrescine and CCC were used, either as a component of the culture media or by spraying or injecting them to the umbels. Additionally, two concentration of gellam gum were tested. A higher number of gynogenic embryos was achieved by using 7 g dm−3 gellam gum, and this number was not affected by the addition of putrescine to the media. CCC sprayed at the umbels significantly increased the gynogenic embryo rate, which was more than three times higher than the control. Cobriza INTA showed the highest induced embryo rate (4.76 %).  相似文献   

14.
Summary We present a strategy for establishing a transgenic doubled haploid maize line from heterozygous transgenic material by means of anther culture. Compared to conventional inbreeding, the in vitro androgenesis technique enables a faster generation of virtually fully homozygous lines. Since the androgenic response is highly genotype-dependent, we crossed transgenic, non-androgenic plants carrying a herbicide resistance marker gene (pat, encoding for phosphinothricin acetyl transferase) with a highly androgenic genotype. The transgenic progenies were used as donor plants for anther culture. One transgenic and three non-transgenic doubled haploid lines have been established within approximately 1 yr. The homozygosity of all four doubled haploid lines was tested by analysis of simple sequence repeat (SSR) markers at 19 different loci. Polymorphisms were found between the lines but not within the lines indicating the homozygous nature of the entire plant genome gained by anther culture. Southern blot analysis revealed that the transgenic donor plants and their doubled haploid progeny exhibited the same integration pattern of the pat gene. No segregation of the herbicide resistance trait has been observed among the progeny of the transgenic doubled haploid line.  相似文献   

15.
单倍体培养是快速获得菊科纯合系的重要途径。目前已进行单倍体研究的菊科植物共有13个种,其中9个已成功获得单倍体植株。菊科中诱导单倍体的途径有花药培养、小孢子培养、离体雌核培养、远源杂交和辐射花粉诱导单倍体。本文详细论述了不同外植体发育时期、预处理、培养基、培养条件等因素对单倍体植株诱导再生的影响。对菊科植物单倍体诱导的几种途径进行对比总结,指出研究中存在的问题并提出思路和建议。  相似文献   

16.
Calli were induced from anthers of Populus simonii × P. nigra. Haploid plants were then regenerated from the callus and multiplied efficiently by culturing leaf explants. The presence of both haploid and diploid cells in the same plant revealed spontaneous chromosome doubling in haploid cells. The haploid plants were transformed with the nptII gene by Agrobacterium-mediated method using leaf explants, and five independent kanamycin-resistant lines were obtained, with a transformation frequency more than 6%. Further PCR test indicated that the exogenous betA gene was transferred into these kanamycin-resistant lines, which were still haploid. Thus, the efficient tissue culture system and transformation of haploid poplar plants were achieved. Our study will contribute to forest improvement via the haploid culture and transgenic technology. Published in Russian in Fiziologiya Rastenii, 2007, Vol. 54, No. 4, pp. 629–633. The text was submitted by the authors in English.  相似文献   

17.
There is very little activity underway to improve the genetics of herbs, spices, and nutraceutical crops. Much of the industry relies on the harvest of “wild” plants; therefore, the potential for variability in performance and active ingredients is high. This presents significant challenges for an industry that is striving to achieve market credibility and meet current regulatory standards. Uniform varieties would also be beneficial for use in clinical trials. The development of plants performing consistently in cultivation under various environmental conditions and producing a stable quality and quantity of desired active ingredients cannot solely rely on traditional plant breeding, but must be supported by the development of tissue culture methods targeted to the species of interest. We have screened over 80 herb, spice, and nutraceutical species for microspore culture response using the Brassica napus microspore culture protocol. The majority of the species did not respond. Swelling and initial divisions of the microspores were observed in some species. Embryogenesis, however, was observed in the Apiaceae and the Caryophyllaceae. Species within these families were selected for further optimization. Improvements in embryogenic frequency were observed in both families. Haploid and doubled haploid plants have been regenerated in anise (Pimpinella anisum), carrot (Daucus carota), caraway (Carum carvi), dill (Anethum graveolens), fennel (Foeniculum vulgare), lovage (Levisticum officinale), laceflower (Amni majus), parsnip (Petroselinum crispum), and cow cockle (Saponaria vaccaria).  相似文献   

18.
There is a requirement of haploid and double haploid material and homozygous lines for cell culture studies and breeding in flax. Anther culture is currently the most successful method producing doubled haploid lines in flax. Recently, ovary culture was also described as a good source of doubled haploids. In this review we focus on tissue and plants regeneration using anther culture, and cultivation of ovaries containing unfertilized ovules. The effect of genotype, physiological status of donor plants, donor material pre-treatment and cultivation conditions for flax anthers and ovaries is discussed here. The process of plant regeneration from anther and ovary derived calli is also in the focus of this review. Attention is paid to the ploidy level of regenerated tissue and to the use of molecular markers for determining of gametic origin of flax plants derived from anther and ovary cultures. Finally, some future prospects on the use of doubled haploids in flax biotechnology are outlined here.  相似文献   

19.
Martinez  C.  Roux  C.  Jauneau  A.  Bécard  G.  Dargent  R. 《Plant and Soil》2003,251(1):65-71
Sporisorium reilianum f.sp. zeae, the causal agent of head smut, infects the roots of the maize plantlets. Little information is available concerning the development of the fungus in soil, although this saprophytic phase is an important part of the life cycle. This paper reports that water potential also affects hyphal induction, and this effect on the fungus may influence disease transmission. In response to a decrease in water potential from 0 to –1.52 MPa in presence of variable molecular weight polyethylene glycols, haploid hyphae develop from the haploid yeast. Hyphal extension is fastest at low water potentials (–1.2 MPa) controlled with high molecular weight polyethylene glycols, PEG-3350 and PEG-8000. Formation of parasitic dikaryotic hyphae following fusion between haploid hyphae was possible at low water potential (–1.2 MPa) and was not inhibited by water stress. These results are consistent with the hypothesis that the effects of low soil water potential on yeast–hyphal transition and hyphal growth facilitate the convergence of compatible haploid strains, and that this may increase disease severity.  相似文献   

20.
Protocols were developed for the generation of haploid or doubled haploid plants from developing microspores and ovules of Gentiana triflora. Plant regeneration was achieved using flower buds harvested at the mid to late uninucleate stages of microspore development and then treated at 4°C for 48 h prior to culture. Anthers and ovaries were cultured on modified Nitsch and Nitsch medium supplemented with a combination of naphthoxyacetic acid and benzylaminopurine. The explants either regenerated new plantlets directly or produced callus that regenerated into plantlets upon transfer to basal media supplemented with benzylaminopurine. Among seven genotypes of different ploidy levels used, 0–32.6% of cultured ovary pieces and 0–18.4% of cultured anthers regenerated plants, with all the genotypes responding either through ovary or anther culture. Flow cytometry confirmed that 98% of regenerated plants were either diploid or haploid. Diploid regenerants were shown to be gamete-derived by observing parental band loss using RAPD markers. Haploid plants were propagated on a proliferation medium and then treated with oryzalin for 4 weeks before transfer back to proliferation medium. Most of the resulting plants were diploids. Over 150 independently derived diploidised haploid plants have been deflasked. The protocol has been successfully used to regenerate plants from developing gametes of seven different diploid, triploid and tetraploid G. triflora genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号