首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Free radical research》2013,47(9):1069-1080
Abstract

Disruption of neuronal iron homeostasis and oxidative stress are closely related to the pathogenesis of Parkinson's disease (PD). Ginkgetin, a natural biflavonoid isolated from leaves of Ginkgo biloba L, has many known effects, including anti-inflammatory, anti-influenza virus, and anti-fungal activities, but its underlying mechanism of the neuroprotective effects in PD remains unclear. The present study utilized PD models induced by 1-methyl-4-phenylpyridinium (MPP+) and 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to explore the neuroprotective ability of ginkgetin in vivo and in vitro. Our results showed that ginkgetin could provide significant protection from MPP+-induced cell damage in vitro by decreasing the levels of intracellular reactive oxygen species and maintaining mitochondrial membrane potential. Meanwhile, ginkgetin dramatically inhibited cell apoptosis induced by MPP+ through the caspase-3 and Bcl2/Bax pathway. Moreover, ginkgetin significantly improved sensorimotor coordination in a mouse PD model induced by MPTP by dramatically inhibiting the decrease of tyrosine hydroxylase expression in the substantia nigra and superoxide dismutase activity in the striatum. Interestingly, ginkgetin could strongly chelate ferrous ion and thereby inhibit the increase of the intracellular labile iron pool through downregulating L-ferritin and upregulating transferrin receptor 1. These results indicate that the neuroprotective mechanism of ginkgetin against neurological injury induced by MPTP occurs via regulating iron homeostasis. Therefore, ginkgetin may provide neuroprotective therapy for PD and iron metabolism disorder related diseases.  相似文献   

2.
CD8+ cytotoxic T lymphocytes (CTLs) are critical mediators of anti‐tumor immunity, and controlling the mechanisms that govern CTL functions could be crucial for enhancing patient outcome. Previously, we reported that hepatocyte growth factor (HGF) limits effective murine CTL responses via antigen‐presenting cells. Here, we show that a fraction of murine effector CTLs expresses the HGF receptor c‐Met (c‐Met+ CTLs). Phenotypic and functional analysis of c‐Met+ CTLs reveals that they display enhanced cytolytic capacities compared to their c‐Met? CTL counterparts. Furthermore, HGF directly restrains the cytolytic function of c‐Met+ CTLs in cell‐mediated cytotoxicity reactions in vitro and in vivo and abrogates T‐cell responses against metastatic melanoma in vivo. Finally, we establish in three murine tumor settings and in human melanoma tissues that c‐Met+ CTLs are a naturally occurring CD8+ T‐cell population. Together, our findings suggest that the HGF/c‐Met pathway could be exploited to control CD8+ T‐cell‐mediated anti‐tumor immunity.  相似文献   

3.
Improving crop plants to be productive in saline soils or under irrigation with saline water would be an important technological advance in overcoming the food and freshwater crises that threaten the world population. However, even if the transformation of a glycophyte into a plant that thrives under seawater irrigation was biologically feasible, current knowledge about Na+ effects would be insufficient to support this technical advance. Intriguingly, crucial details about Na+ uptake and its function in the plant have not yet been well established. We here propose that under saline conditions two nitrate‐dependent transport systems in series that take up and load Na+ into the xylem constitute the major pathway for the accumulation of Na+ in Arabidopsis shoots; this pathway can also function with chloride at high concentrations. In nrt1.1 nitrate transport mutants, plant Na+ accumulation was partially defective, which suggests that NRT1.1 either partially mediates or modulates the nitrate‐dependent Na+ transport. Arabidopsis plants exposed to an osmotic potential of ?1.0 MPa (400 mOsm) for 24 h showed high water loss and wilting in sorbitol or Na/MES, where Na+ could not be accumulated. In contrast, in NaCl the plants that accumulated Na+ lost a low amount of water, and only suffered transitory wilting. We discuss that in Arabidopsis plants exposed to high NaCl concentrations, root Na+ uptake and tissue accumulation fulfil the primary function of osmotic adjustment, even if these processes lead to long‐term toxicity.  相似文献   

4.
In vivo measurement of a metabolic activity. — Purine catabolism in Pharbitis nil cotyledons. To study the influence of light and darkness on the level of purine degradation, an in vivo method of measuring this catabolic pathway has been developed. Cotyledon discs of Pharbitis nil were incubated in an aqueous solution of hypoxanthine-8-14C. This purine base was first oxidized by a NAD+ dependent xanthine dehydrogenase. The metabolic flow was expressed either by the quantity of products (xanthine + uric acid + allantoin + allantoic acid) or by the rate of hypoxanthine degradation in the discs. This easy, reproducible and very sensitive technique of measurement has been investigated with respect to several variables including tissue quantity, length of incubation time, hypoxanthine and NAD+ concentrations, and pH. The quantity of products varied proportionally with the tissue quantity but the catabolic rate was not linked to this. The best conditions of measurement were to incubate discs for at least 60 min in distilled water containing only hypoxanthine-8-14C at low concentrations (below 0.25 mM). The values obtained represent the actual in vivo level of the studied metabolic pathway. The NAD+ concentration within the tissue does not seem to be a limiting factor for hypoxanthine degradation, the hypoxanthine concentration itself appears to be the only limiting factor in endogenous purine catabolism.  相似文献   

5.
A key transducer in energy conservation and signaling cell death is the mitochondrial H+‐ATP synthase. The expression of the ATPase inhibitory factor 1 (IF1) is a strategy used by cancer cells to inhibit the activity of the H+‐ATP synthase to generate a ROS signal that switches on cellular programs of survival. We have generated a mouse model expressing a mutant of human IF1 in brain neurons to assess the role of the H+‐ATP synthase in cell death in vivo. The expression of hIF1 inhibits the activity of oxidative phosphorylation and mediates the shift of neurons to an enhanced aerobic glycolysis. Metabolic reprogramming induces brain preconditioning affording protection against quinolinic acid‐induced excitotoxicity. Mechanistically, preconditioning involves the activation of the Akt/p70S6K and PARP repair pathways and Bcl‐xL protection from cell death. Overall, our findings provide the first in vivo evidence highlighting the H+‐ATP synthase as a target to prevent neuronal cell death.  相似文献   

6.
In developing seeds of bean (Phaseolus vulgaris L.), phloem‐imported assimilates (largely sucrose and potassium) are released from coats to seed apoplasm and subsequently retrieved by the dermal cell complexes of cotyledons. To investigate the mechanisms of K+ uptake by the cotyledons, protoplasts of dermal cell complexes were isolated and whole‐cell currents across their plasma membranes were measured with the patch‐clamp technique. A weakly rectified cation current displaying a voltage‐dependent blockade by external Ca2+ and acidic pH, dominated the conductance of the protoplasts. The P haseolus v ulgaris Cotyledon Dermal‐cell pH and Calcium‐dependent Cation Conductance (Pv‐CD‐pHCaCC) was highly selective for K+ over Ca2+ and Cl. For K+ current through Pv‐CD‐pHCaCC a sigmoid shaped current–voltage (IV) curve was observed with negative conductance at voltages between ?200 and ?140 mV. This negative K+ conductance was Ca2+ dependent. With other univalent cations (Na+, Rb+, NH4+) the currents were smaller and were not Ca2+ dependent. Reversal potentials remained constant when external K+ was substituted with these cations, suggesting that Pv‐CD‐pHCaCC channels were non‐selective. The Pv‐CD‐pHCaCC would provide a pathway for K+ and other univalent cation influx into developing cotyledons. These cation influxes could be co‐ordinated with sucrose influx via pH and Ca2+dependence.  相似文献   

7.

Background

Urease subunit B (UreB), a conserved and key virulence factor of Helicobacter pylori (H. pylori), can induce the host CD4+ T cell immune responses to provide protection, but less is known regarding CD8+ T cell responses. The characteristics of H. pylori-specific CD8+ T cell responses and the mechanism underlying antigen processing and presentation pathways remain unclear. This study was focus on protective antigen recombinant UreB (rUreb) to detect specific CD8+ T cell responses in vitro and elucidate the mechanism of UreB antigen processing and presentation.

Methods

The peripheral blood mononuclear cells (PBMCs) collected from H. pylori-infected individuals were stimulated with rUreB in vitro to detect specific CD8+ T cell responses after co-culture with rUreB-pulsed autologous hMDCs. Through blocking assay, we investigated the potential pathway of UreB antigen processing and presentation via the cytosolic pathway or vacuolar pathway. The cytokines production of UreB specific CD8+ T cell were evaluated as well.

Results

We demonstrated UreB can induce specific CD8+ T cell immune responses in H. pylori infected individuals. Importantly, we characterized that UreB were mainly processed by proteasome instead of lysosomal proteases and presented through cytosolic pathway of cross-presentation, which requires endoplasmic reticulum–Golgi transport and newly synthesized MHC-I molecules, to induce functional-specific CD8+ T cell (IFN-γ + TNF-α + Grz A+ Grz B+) responses.

Conclusions

These results suggest that H. pylori UreB induces specific CD8+ T cell responses through cytosolic pathway of cross-presentation in infected individuals.  相似文献   

8.
9.
This work investigated the importance of the ability of leaf mesophyll cells to control K+ flux across the plasma membrane as a trait conferring tissue tolerance mechanism in plants grown under saline conditions. Four wheat (Triticum aestivum and Triticum turgidum) and four barley (Hordeum vulgare) genotypes contrasting in their salinity tolerance were grown under glasshouse conditions. Seven to 10‐day‐old leaves were excised, and net K+ and H+ fluxes were measured from either epidermal or mesophyll cells upon acute 100 mM treatment (mimicking plant failure to restrict Na+ delivery to the shoot) using non‐invasive microelectrode ion flux estimation (the MIFE) system. To enable net ion flux measurements from leaf epidermal cells, removal of epicuticular waxes was trialed with organic solvents. A series of methodological experiments was conducted to test the efficiency of different methods of wax removal, and the impact of experimental procedures on cell viability, in order to optimize the method. A strong positive correlation was found between plants' ability to retain K+ in salt‐treated leaves and their salinity tolerance, in both wheat and especially barley. The observed effects were related to the ionic but not osmotic component of salt stress. Pharmacological experiments have suggested that voltage‐gated K+‐permeable channels mediate K+ retention in leaf mesophyll upon elevated NaCl levels in the apoplast. It is concluded that MIFE measurements of NaCl‐induced K+ fluxes from leaf mesophyll may be used as an efficient screening tool for breeding in cereals for salinity tissue tolerance.  相似文献   

10.
The major signaling pathways regulating gastric stem cells are unknown. Here we report that Notch signaling is essential for homeostasis of LGR5+ antral stem cells. Pathway inhibition reduced proliferation of gastric stem and progenitor cells, while activation increased proliferation. Notch dysregulation also altered differentiation, with inhibition inducing mucous and endocrine cell differentiation while activation reduced differentiation. Analysis of gastric organoids demonstrated that Notch signaling was intrinsic to the epithelium and regulated growth. Furthermore, in vivo Notch manipulation affected the efficiency of organoid initiation from glands and single Lgr5‐GFP stem cells, suggesting regulation of stem cell function. Strikingly, constitutive Notch activation in LGR5+ stem cells induced tissue expansion via antral gland fission. Lineage tracing using a multi‐colored reporter demonstrated that Notch‐activated stem cells rapidly generate monoclonal glands, suggesting a competitive advantage over unmanipulated stem cells. Notch activation was associated with increased mTOR signaling, and mTORC1 inhibition normalized NICD‐induced increases in proliferation and gland fission. Chronic Notch activation induced undifferentiated, hyper‐proliferative polyps, suggesting that aberrant activation of Notch in gastric stem cells may contribute to gastric tumorigenesis.  相似文献   

11.
Summary Two loci,ma-l + andry +, necessary for xanthine dehydrogenase activity inDrosophila melanogaster have been studied for dosage effects utilizing deficiencies and duplications induced for this purpose. Comparisons of one, two and three doses ofma-l + in the female or one and two doses in the male indicate that there is no increase in specific enzyme activity with dose. On the other hand, comparisons of one, two and three doses ofry + in the male and female reveal an increase in enzyme activity that is roughly proportional to dose. Since dosage ofry + is limiting, whereas that ofma-l + is not, the final concentration of xanthine dehydrogenase is shown to depend on the number of doses ofry +.The implications of these findings with respect to the hypothesis of dosage compensation and to the mechanism of control of enzyme and protein concentration are discussed.Operated by Union Carbide Corporation for the U.S. Atomic Energy Commission.  相似文献   

12.
Although immunotherapy (anti-PD-1/PD-L1 antibodies) has been approved for clinical treatment of lung cancer, only a small proportion of patients respond to monotherapy. Hence, understanding the regulatory mechanism of PD-L1 is particularly important to identify optimal combinations. In this study, we found that inhibition of CDK5 induced by shRNA or CDK5 inhibitor leads to reduced expression of PD-L1 protein in human lung adenocarcinoma cells, while the mRNA level is not substantially altered. The PD-L1 protein degradation is mediated by E3 ligase TRIM21 via ubiquitination-proteasome pathway. Subsequently, we studied the function of CDK5/PD-L1 axis in LUAD. In vitro, the absence of CDK5 in mouse Lewis lung cancer cell (LLC) has no effect on cell proliferation. However, the attenuation of CDK5 or combined with anti-PD-L1 greatly suppresses tumor growth in LLC implanted mouse models in vivo. Disruption of CDK5 elicits a higher level of CD3+, CD4+ and CD8+ T cells in spleens and lower PD-1 expression in CD4+ and CD8+ T cells. Our findings highlight a role for CDK5 in promoting antitumor immunity, which provide a potential therapeutic target for combined immunotherapy in LUAD.  相似文献   

13.
14.
15.
Summary Bovine aortic endothelial cells (BAECs) respond to bradykinin with an increase in cytosolic-free Ca2+ concentration, [Ca2+] i , accompanied by an increase in surface membrane K+ permeability. In this study, electrophysiological measurement of K+ current was combined with86Rb+ efflux measurements to characterize the K+ flux pathway in BAECs. Bradykinin- and Ca2+-activated K+ currents were identified and shown to be blocked by the alkylammonium compound, tetrabutylammonium chloride and by the scorpion toxin,noxiustoxin, but not by apamin or tetraethylammonium chloride. Whole-cell and single-channel current analysis suggest that the threshold for Ca2+ activation is in the range of 10 to 100nm [Ca2+] i . The whole-cell current measurement show voltage sensitivity only at the membrane potentials more positive than 0 mV where significant current decay occurs during a sustained depolarizing pulse. Another K+ current present in control conditions, an inwardly rectifying K+ current, was blocked by Ba2+ and was not affected bynoxiustoxin or tetrabutylammonium chloride. Efflux of86Rb from BAEC monolayers was stimulated by both bradykinin and ionomycin. Stimulated efflux was blocked by tetrabutyl- and tetrapentyl-ammonium chloride and bynoxiustoxin, but not by apamin or furosemide. Thus,86Rb+ efflux stimulated by bradykinin and ionomycin has the same pharmacological sensitivity as the bradykinin- and Ca2+-activated membrane currents. The results confirm that bradykinin-stimulated86Rb+ efflux occurs via Ca2+-activated K+ channels. The blocking agents identified may provide a means for interpreting the role of the Ca2+-activated K+ current in the response of BAECs to bradykinin.  相似文献   

16.
Summary The lepidopteran midgut is a model for the oxygendependent, electrogenic K+ transport found in both alimentary and sensory tissues of many economically important insects. Structural and biochemical evidence places the K+ pump on the portasome-studded apical plasma membrane which borders the extracellular goblet cavity. However, electrochemical evidence implies that the goblet cell K+ concentration is less than 50mm. We used electron probe X-ray microanalysis of frozenhydrated cryosections to measure the concentration of Na, Mg, P, S, Cl, K, Ca and H2O in several subcellular sites in the larval midgut ofManduca sexta under several experimental regimes. Na is undetectable at any site. K is at least 100mm in the cytoplasm of all cells. Typicalin vivo values (mm) for K were: blood, 25; goblet and columnar cytoplasm, 120; goblet cavity, 190; and gut lumen, 180. The high K concentration in the apically located goblet cavity declined by 100mm under anoxia. Both cavity and gut fluid are Cl deficient, but fixed negative charges may be present in the cavity. We conclude that the K+ pump is sited on the goblet cell apical membrane and that K+ follows a nonmixing pathway via only part of the goblet cell cytoplasm. The cavity appears to be electrically isolated in alimentary tissues, as it is in sensory sensilla, thereby allowing a PD exceeding 180 mV (lumen positive) to develop across the apical plasma membrane. This PD appears to couple K+ pump energy to nutrient absorption and pH regulation.  相似文献   

17.
Hypothermia induces swelling of dog kidney cortex slices. Swelling of cells during hypothermia is related to a number of factors including the permeability of Cl. By substituting lactobionate for Cl, while maintaining isoosmotic conditions, swelling is prevented. Lactobionate is an impermeable anion and its presence in the suspending fluid prevents swelling of dog kidney cortex slices in salts of Na+, K+ or combinations of Na+ and K+ even in the presence of metabolic inhibitors. By maintaining a ratio of 80 mM lactobionate: 60 mM chloride and an appropriate ratio of Na+:K+ (80 mM:60 mM), both the total tissue H2O and ratio of intracellular K+/Na+ are kept within normal ranges during hypothermic incubation of tissue slices. Kidney cortex slices suspended in this medium at 30 °C respire at a rate 30–40% slower than that of control slices suspended in saline. A similar result is obtained by adding ouabain to slices suspended in saline. This suggests that the Na+-pump activity is suppressed under these conditions and results in a reduced energy demand on the cell. These results are discussed in relation to utilizing this type of solution for long-term perfusion preservation of kidneys for transplantation.  相似文献   

18.
The expression of proteins that play a role in neuronal differentiation was examined in central nervous system (CNS) micromass embryo cell cultures and compared to expression at comparable developmental stages in vivo. The protein product of the src proto-oncogene (pp60c-src) has been postulated to have a specific role in development because, although it is expressed in many tissues, marked increases in amount and activity of pp60c-src occur in neurons at the time of differentiation. Another protein of interest, high molecular weight neurofilament (NF) protein, is found in differentiated neurons. In the present study, changes over time in the expression of these two proteins in vitro and in vivo were examined. In the micromass cell cultures, primary cells from day 12 rat embryo CNS are plated at high density and differentiate into neurons during five days in culture. Tissues from embryos grown in vivo were assessed at 12 and 17 days post-coitum. Proteins were quantified by PAGE separation of equal amounts of total protein followed by transfer to membranes, immunoblotting, and densitometric scanning of blots. Increases in the amount of both proteins with neuronal differentiation was shown. Protein kinase activity of immunoprecipitated pp60c-src also increased in cell cultures and in embryos. Similarity in patterns of expression between in vitro and in vivo tissue samples provides further evidence that the cultures closely simulate in vivo differentiation and are a useful system for examining expression of developmental genes in vitro.Abbreviations BCIP 5-bromo-4-chloro-3-indolylphosphate p-toluidine salt - CNS central nervous system - DPBS Dulbecco's phosphate-buffered saline - GAM-AP goat anti-mouse IgG alkaline phosphatase conjugate - LB limb bud - NF high molecular weight neurofilament protein - NBT nitroblue tetrazolium chloride - SDS-PAGE polyacrylamide gel electrophoresis - PVDF polyvinylidene difluoride - RIPA radioimmunoprecipitation - TBS Tris-buffered saline - TTBS TBS with 0.05% Tween-20 Presented in part at the 1989 and 1990 Teratology Society Meetings and the 1990 Society of Toxicology Meetings.  相似文献   

19.
Parkinson's disease (PD) is a typical neurodegenerative disease. α-Lipoic acid (α-LA) can reduce the incidence of neuropathy. The present study explored the role and mechanism of α-LA in 1-methyl-4-phenylpyridinium (MPP+)-induced cell model of PD. The PD model was induced via treating PC12 cells with MPP+ at different concentrations. MPP+ and α-LA effects on PC12 cells were assessed from cell viability and ferroptosis. Cell viability was detected using the cell counting kit-8 assay. Malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), iron, reactive xygen species (ROS), and glutathione (GSH) concentrations, and ferroptosis-related protein SLC7A11 and GPx4 expressions were used for ferroptosis evaluation. p-PI3K, p-Akt, and nuclear factor erythroid 2-related factor 2 (Nrf2) protein levels were detected. The PI3K/Akt/Nrf2 pathway inhibitors were applied to verify the role of the PI3K/Akt/Nrf2 pathway in α-LA protection against MPP+-induced decreased cell viability and ferroptosis. MPP+-reduced cell viability and induced ferroptosis as presented by increased MDA, 4-HNE, iron, and ROS concentrations, and reduced levels of GSH and ferroptosis marker proteins (SLC7A11 and GPx4). α-LA attenuated MPP+-induced cell viability decline and ferroptosis. The PI3K/Akt/Nrf2 pathway was activated after α-LA treatment. Inhibiting the PI3K/Akt/Nrf2 pathway weakened the protection of α-LA against MPP+ treatment. We highlighted that α-LA alleviated MPP+-induced cell viability decrease and ferroptosis in PC12 cells via activating the PI3K/Akt/Nrf2 pathway.  相似文献   

20.
Summary The apical membrane of rabbit urinary bladder can be functionally removed by application of nystatin at high concentration if the mucosal surface of the tissue is bathed in a saline which mimics intracellular ion concentrations. Under these conditions, the tissue is as far as the movement of univalent ions no more than a sheet of basolateral membrane with some tight junctional membrane in parallel. In this manner the Na+ concentration at the inner surface of the basolateral membrane can be varied by altering the concentration in the mucosal bulk solution. When this was done both mucosal-to-serosal22Na flux and net change in basolateral current were measured. The flux and the current could be further divided into the components of each that were either blocked by ouabain or insensitive to ouabain. Ouabain-insensitive mucosal-to-serosal Na+ flux was a linear function of mucosal Na+ concentration. Ouabain-sensitive Na+ flux and ouabain-sensitive, Na+-induced current both display a saturating relationship which cannot be accounted for by the presence of unstirred layers. If the interaction of Na+ with the basolateral transport process is assumed to involve the interaction of some number of Na+ ions,n, with a maximal flux,M max, then the data can be fit by assuming 3.2 equivalent sites for interaction and a value forM max of 287.8pm cm–2 sec–1 with an intracellular Na concentration of 2.0mm Na+ at half-maximal saturation. By comparing these values with the ouabain-sensitive, Na+-induced current, we calculate a Na+ to K+ coupling ratio of 1.40±0.07 for the transport process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号