首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vitamin D3 24-hydroxylase gene (CYP24) is one of the most strongly induced genes known. Despite this, its induction by the hormone 1alpha,25-dihydroxyvitamin D3 (1alpha,25OH2D3) has been characterized only partially. Therefore, we monitored the spatio-temporal, 1alpha,25OH2D3-dependent chromatin acetylation status of the human CYP24 promoter by performing chromatin immunoprecipitation (ChIP) assays with antibodies against acetylated histone 4. This was achieved by performing PCR on 25 contiguous genomic regions spanning the first 7.7 kb of the promoter. ChIP assays using antibodies against the 1alpha,25OH2D3 receptor (VDR) revealed that, in addition to the proximal promoter, three novel regions further upstream associated with VDR. Combined in silico/in vitro screening identified in three of the four promoter regions sequences resembling known VDREs and reporter gene assays confirmed the inducibility of these regions by 1alpha,25OH2D3)=. In contrast, the fourth VDR-associated promoter region did not contain any recognizable classical VDRE that could account for the presence of the protein on this region. However, re-ChIP assays monitored on all four promoter regions simultaneous association of VDR with retinoid X receptor, coactivator, mediator and RNA polymerase II proteins. These proteins showed a promoter region-specific association pattern demonstrating the complex choreography of the CYP24 gene promoter activation over 300 minutes. Thus, this study reveals new information concerning the regulation of the CYP24 gene by 1alpha,25OH2D3, and is a demonstration of the simultaneous participation of multiple, structurally diverse response elements in promoter activation in a living cell.  相似文献   

2.
3.
4.
5.
6.
Receptor activator of NFkappa-B ligand (RANKL) is essential for osteoclast formation, function, and survival. Although RANKL mRNA and protein levels are modulated by 1,25(OH)2D3 and other osteoactive factors, regulatory mechanisms remain unclear. In this study, we show that 2 kb or 2 kb plus exon 1 of a RANKL promoter sequence conferred neither 1,25(OH)2D3 response nor tissue specificity. The histone deacetylase inhibitors trichostatin A (TSA) and sodium butyrate (SB), however, strongly increased RANKL promoter activity. A series of 5'-deleted RANKL promoter constructs from 2,020 to 110 bp showed fourfold increased activity after TSA treatment. TSA also dose dependently enhanced endogenous RANKL mRNA expression with 50 microM of TSA treatment causing equivalent RANKL expression to that seen with 1 nM 1,25(OH)2D3. Using a chromatin immunoprecipitation (ChIP) assay we showed that TSA significantly enhanced association of both acetylated histone H3 and H4 on the RANKL promoter, with H4 > H3. A similar increase in acetylated histone H4 on the RANKL gene locus was seen after 1,25(OH)2D3 treatment, but ChIP assay did not reveal localization of VDR/RXR heterodimers on the putative VDRE of the RANKL promoter. To explore the role of H4 acetylation of 1,25(OH)2D3 stimulated RANKL, we added both TSA and 1,25(OH)2D3 together. While the combination further increased acetylation of H4 on the RANKL locus, surprisingly, TSA inhibited 1,25(OH)2D3-induced RANKL mRNA expression by 70% at all doses of 1 ,25(OH)2D3 studied. These results suggest that TSA increases of endogenous expression of RANKL involve enhanced acetylation of histones on the proximal RANKL promoter. Preventing deacetylation, however, blocks 1,25(OH)2D3 action on this gene. Chromatin remodeling is therefore involved in RANKL expression.  相似文献   

7.
8.
9.
Human colon carcinoma cells express 25-hydroxyvitamin D(3)-1alpha-hydroxylase (CYP27B1) and thus produce the vitamin D receptor (VDR) ligand 1alpha,25-dihydroxyvitamin D(3) (1,25-D3), which can be metabolized by 25-hydroxyvitamin D(3)-24-hydroxylase (CYP24). Expression of VDR, CYP27B1, and CYP24 determines the efficacy of the antimitotic action of 1,25-D3 and is distinctly related to the degree of differentiation of cancerous lesions. In the present study we addressed the question of whether the effects of epidermal growth factor (EGF) and of 1,25-D3 on VDR, CYP27B1, and CYP24 gene expression in human colon carcinoma cell lines also depend on the degree of cellular differentiation. We were able to show that slowly dividing, highly differentiated Caco-2/15 cells responded in a dose-dependent manner to both EGF and 1,25-D3 by up-regulation of VDR and CYP27B1 expression, whereas in highly proliferative, less differentiated cell lines, such as Caco-2/AQ and COGA-1A and -1E, negative regulation was observed. CYP24 mRNA was inducible in all clones by 1,25-D3 but not by EGF. From the observed clonal differences in the regulatory effects of EGF and 1,25-D3 on VDR and CYP27B1 gene expression we suggest that VDR-mediated growth inhibition by 1,25-D3 would be efficient only in highly differentiated carcinomas even when under mitogenic stimulation by EGF.  相似文献   

10.
11.
12.
13.
14.
15.
Human colon carcinoma cells express 25-hydroxyvitamin D3-1α-hydroxylase (CYP27B1) and thus produce the vitamin D receptor (VDR) ligand 1α,25-dihydroxyvitamin D3 (1,25-D3), which can be metabolized by 25-hydroxyvitamin D3-24-hydroxylase (CYP24). Expression of VDR, CYP27B1, and CYP24 determines the efficacy of the antimitotic action of 1,25-D3 and is distinctly related to the degree of differentiation of cancerous lesions. In the present study we addressed the question of whether the effects of epidermal growth factor (EGF) and of 1,25-D3 on VDR, CYP27B1, and CYP24 gene expression in human colon carcinoma cell lines also depend on the degree of cellular differentiation. We were able to show that slowly dividing, highly differentiated Caco-2/15 cells responded in a dose-dependent manner to both EGF and 1,25-D3 by up-regulation of VDR and CYP27B1 expression, whereas in highly proliferative, less differentiated cell lines, such as Caco-2/AQ and COGA-1A and -1E, negative regulation was observed. CYP24 mRNA was inducible in all clones by 1,25-D3 but not by EGF. From the observed clonal differences in the regulatory effects of EGF and 1,25-D3 on VDR and CYP27B1 gene expression we suggest that VDR-mediated growth inhibition by 1,25-D3 would be efficient only in highly differentiated carcinomas even when under mitogenic stimulation by EGF.  相似文献   

16.
17.
18.
19.
Deregulation of the HER2 oncogene occurs in 30% of human breast cancers and correlates with poor prognosis and increased propensity for metastasis. Since the molecular basis of HER2 overexpression in human cancers is not known, we sought to determine whether chromatin remodeling pathways are involved in the regulation of HER2 expression. We report that compared with breast cancer cells expressing a low level of HER2, HER2-overexpressing breast cancer cells contained significantly higher levels of acetylated and phosphorylated histone H3, and acetylated histone H4 associated with the HER2 promoter. Decreased recruitment of histone deacetylases in the promoter is also noted in the HER2-overexpressing cell. The association of acetylated histone H4 with HER2 gene chromatin and HER2 expression in breast cancer cells was upregulated by an inhibitor of histone deacetylases. Treatment with histone deacetylase inhibitor also reduced the association of histone deacetylase-1 and -2 with the HER2 promoter. In addition, the tumor promoters 12-O-tetradecanoylphorbol-13-acetate and okadaic acid stimulated the association of phosphorylated histone H3 on serine 10 with the HER2 promoter and also stimulated HER2 expression. These findings identify histone acetylation and histone phosphorylation as novel regulatory modifications that target HER2 gene chromatin, and suggest that elevated levels of these chromatin-relaxing components in the vicinity of the HER2 gene promoter may constitute an important non-genomic mechanism of HER2 overexpression in human breast cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号