首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Catecholamines induce net salt and water movements in duck red cells incubated in isotonic solutions. The rate of this response is approximately three times greater than a comparable effect observed in 400 mosmol hypertonic solutions in the absence of hormone (W.F. Schmidt and T. J. McManus. 1977 a.J. Gen. Physiol. 70:59-79. Otherwise, these two systems share a great many similarities. In both cases, net water and salt movements have a marked dependence on external cation concentrations, are sensitive to furosemide and insensitive to ouabain, and allow the substitution of rubidium for external potassium. In the presence of ouabain, but the absence of external potassium (or rubidium), a furosemide-sensitive net extrusion of sodium against a large electrochemical gradient can be demonstrated. When norepinephrine-treated cells are incubated with ouabain and sufficient external sodium, the furosemide-sensitive, unidirectional influxes of both sodium and rubidium are half- maximally saturated at similar rubidium concentrations; with saturating external rubidium, the same fluxes are half-maximal at comparable levels of external sodium. In the absence of sodium, a catecholamine-stimulated, furosemide-sensitive influx of rubidium persists. In the absence of rubidium, a similar but smaller component of sodium influx can be seen. We interpret these results in terms of a cotransport model for sodium plus potassium which is activated by hypertonicity or norepinephrine. When either ion is absent from the incubation medium, the system promotes an exchange-diffusion type of movement of the co-ion into the cells. In the absence of external potassium, net movement of potassium out of the cell leads to a coupled extrusion of sodium against its electrochemical gradient.  相似文献   

2.
We report in this paper different modes of Na and K transport in human red cells, which can be inhibited by furosemide in the presence of ouabain. Experimental evidence is provided for inward and outward coupled transport of Na and K, Ki/Ko and Nai/Nao exchange, and uncoupled Na or K efflux. The outward cotransport of Na and K was defined as the furosemide-sensitive (FS) component of Na and K effluxes into choline medium and as the Cl-dependent or cis-stimulated component of the ouabain-resistant (OR) Na and K effluxes. Inward cotransport of Na and K was defined by the stimulation by external Na (Nao) of the K influx and the stimulation by external K (Ko) of the Na influx in the presence of ouabain. Both effects were FS and Cl dependent. Experimental evidence for an FS Ki/Ko exchange pathway of the Na/K cotransport was provided by (a) the stimulation by external K of FS K influx and efflux, and (b) the stimulation by internal Na or K of FS K influx in the absence of external Na. Evidence for an FS Nai/Nao exchange pathway was provided by the stimulation of FS Na influx by internal Na from a K-free medium (130 mM NaCl). This pathway was four to six times smaller than the Ki/Ko exchange. In cells containing only Na or K, incubated in media containing only Na or K, respectively, there was FS efflux of the cation without simultaneous inward transport (FS uncoupled Na and K efflux). The stoichiometric ratio of FS outward cotransport of Na and K into choline medium varied with the ratio of Nai-to-Ki concentrations, and when Nai/Ki was close to 1, the ratio of FS outward Na to K flux was also 1. In choline media, FS Na efflux was inhibited by external K (noncompetitively), whereas FS k efflux was stimulated. The stimulation of FS K efflux was due to the stimulation by Ko of the Ki/Ko exchange pathway. Thus, the stoichiometry of FS Na and K effluxes also varied in the presence of external K. A minimal model for a reaction scheme of FS Na and K transport accounts for cis stimulation, trans inhibition, and trans stimulation, and for variable stoichiometry of the FS cation fluxes.  相似文献   

3.
Human leucocytes incubated in tissue culture fluid of low-sodium concentration (2 mM; iso-osmolarity maintained with choline chloride) reached a new equlibrium within 1 hour and lost approximately 25% of intracellular potassium and 70% of intracellular sodium. The rate constant for ouabainsensitive sodium efflux fell by more than 50% and the ouabain-insensitive rate constant increased nearly threefold in the low-sodium medium. Total sodium efflux fell in proportion to internal sodium whereas ouabain-insensitive sodium efflux remained unchanged. A reduction in external sodium from 140 to 2 mM was associated with a 75% fall in sodium influx. In the low-sodium medium ouabainsensitive potassium influx exceeded ouabain-sensitive sodium efflux and no ouabain-sensitive potassium efflux could be demonstrated. Ouabain-insensitive potassium influx and that portion of potassium efflux which is dependent on external potassium fell in parallel in low-sodium cells, suggesting reduced activity of a ouabain-insensitive K:K exchange system.  相似文献   

4.
J D Lin 《Life sciences》1988,43(4):325-333
Potassium transport in microvessels isolated from rat brain by a technique involving density gradient centrifugation was studied in HEPES buffer solutions of varying osmolarity from 200 to 420 mosmols, containing different concentration of sodium chloride, choline chloride, or sodium nitrate. The flux of 86Rb (as a tracer for K) into and out of the endothelial cells was estimated. Potassium influx was very sensitive to the osmolarity of the medium. Ouabain-insensitive K-component was reduced in hypotonic medium and was increased in medium made hypertonic with sodium chloride or mannitol. Choline chloride replacement caused a large reduction in K influx. Potassium influx was significant decrease when nitrate is substituted for chloride ion in isotonic and hypertonic media, whereas a slight decrease was found in hypotonic medium. The decrease of K influx in the ion-replacement medium is due to a decrement of the ouabain-insensitive component. Potassium efflux was unchanged in hypotonic medium but was somewhat reduced in hypertonic medium. The marked effect of medium osmolarity on K fluxes suggests that these fluxes may be responsible for the volume regulatory K movements. The possible mechanism of changes of K flux under anisotonic media is also discussed.  相似文献   

5.
The mode of influx of 86Rb+, a K+ congener, to exponentially proliferating L1210 murine leukemia cells, incubated in a Krebs-Ringer buffer, has been characterised. The influx was composed of a ouabain-sensitive fraction (approx. 40%), a loop diuretic-sensitive fraction (approx. 40%) and a fraction which was insensitive to both types of inhibitor (approx. 15%). The fraction of ouabain-insensitive 86Rb+ influx, which was fully inhibited by furosemide (1 mM) or bumetanide (100 microM), was completely inhibited when Cl- was completely substituted by nitrate or gluconate ions, but was slightly (29 +/- 12%) stimulated if the Cl- was substituted by Br-. The substitution of Na+ by Li+, choline or tetramethylammonium ions inhibited the loop diuretic-sensitive fraction of 86Rb+ uptake. These results suggested that a component of 86Rb+ influx to L1210 cells was mediated via a Na+/K+/Cl- cotransporter. 86Rb+ efflux from L1210 cells which had been equilibrated with 86Rb+ and incubated in the presence or absence of 1 mM ouabain, was insensitive to the loop diuretics. Additionally, efflux rates were found to be independent of the external concentration of K+, suggesting that efflux was not mediated by K+-K+ exchange. The initial rate of 86Rb+ influx to L1210 cells in the plateau phase of growth was reduced to 44% of that of exponentially dividing cells, the reduction being accounted for by significant decreases in both ouabain- and loop diuretic-sensitive influx; these cells were reduced in volume compared to cells in the exponential phase of cell growth. In cells which had been deprived of serum for 18 h, and which showed an increase of the proportion of cells in the G1 phase of the cell cycle, the addition of serum stimulated an immediate increase in the furosemide-sensitive component of 86Rb+ influx. Diuretic-sensitive 86Rb+ influx was not altered by the incubation of the cells with 100 microM dibutyryl cyclic AMP, but was inhibited by 10 microM of the cross-linking agent nitrogen mustard (bis(2-chloro-ethyl)methylamine, HN2).  相似文献   

6.
In order to investigate whether Na+ participates in loop diuretic-sensitive Cl(-)-cation co-transport in the beta-cells, we tested the interaction between the effects of Na+ deficiency, furosemide and D-glucose on 86Rb+ fluxes in beta-cell-rich mouse pancreatic islets. Removal of extracellular Na+ slightly reduced the ouabain-resistant 86Rb+ influx and the specific effect of 1 mM furosemide on this influx was significantly smaller in Na(+)-deficient medium. The capacity of 20 mM D-glucose to reduce the ouabain-resistant 86Rb+ influx was not changed by removal of extracellular Na+. The 86Rb+ efflux from preloaded islets was rapidly and reversibly reduced by Na+ deficiency. Furosemide (1 mM) reduced the 86Rb+ efflux and the effect of the combination of Na+ deficiency and 1 mM furosemide was not stronger than the effect of furosemide alone. 22Na+ efflux was reduced by both ouabain and furosemide and the effects appeared to be additive. The data suggest that Na+ participates in loop diuretic-sensitive Cl(-)-cation co-transport in the pancreatic beta-cells. This adds further support to the idea that beta-cells exhibit a Na+, K+, Cl- co-transport system. Since some of the furosemide effect on 86Rb+ efflux persisted in the Na(+)-deficient medium, it is likely that also loop diuretic-sensitive K+, Cl- co-transport exists in this cell type.  相似文献   

7.
Sodium and potassium transport in the definitive series of chick embryo red cells changes significantly, both qualitatively and quantitatively, during maturation. Sodium efflux and potassium influx consist of three parts: a ouabain-sensitive, a furosemide-sensitive, and a ouabain-furosemide-insensitive component. In chick red cells of most ages, the ouabain-sensitive and furosemide-sensitive parts of the cation fluxes do not overlap. Cation transport in the more mature red cells is increased significantly by epinephrine, whereas cation transport in red cells from younger embryos is stimulated much less. This is a beta-adrenergic effect of epinephrine and is mediated by cyclic AMP. The relative lack of response in younger embryos is not due to the absence of beta-adrenergic receptor or the lack of production of cyclic AMP. Ouabain has no effect on the hormone-sensitive sodium or potassium transport. On the other hand, furosemide nearly completely abolishes the effect of epinephrine. In addition, there is a good correlation between furosemide-sensitive components of both sodium and potassium transport and the epinephrine-sensitive component. Furosemide has no effect on cyclic AMP levels in the presence or absence of epinephrine. This suggests that furosemide may act directly on the cation transport system. In the red cells from younger embryos, furosemide-sensitive units are present but cannot be fully activated by epinephrine. Therefore, the lack of the hormone effect on cation movements in these cells is consistent with the view that the appropriate units are present, but do not respond fully to intracellular cyclic AMP levels.  相似文献   

8.
The kinetics of Cl-SO4-(2) exchange in Ehrlich ascites tumor cells was investigated in an attempt to determine the stoichiometry of this process. When tumor cells, equilibrated in Cl--free, 25 mM SO4-(2) medium are placed in SO4-(2)-free, 25 mm Cl-medium, both the net amount and rate of Cl-uptake far exceeds SO4-(2) loss.. Addition of the anion transport inhibitor SITS (4-acetamido-4,-isothiocyano-stilbene-2,2'-disulfonic acid) greatly reduces sulfate efflux (97%), but has no measurable effect on chloride uptake. Addition of furosemide, a Cl-transport inhibitor, reduces chloride uptake 94% but is without effect on sulfate efflux. These findings suggest that a chloride permeability pathway exists distinct from that utilized by SO4-(2). SITS, when added to furosemide treated cells, further reduces chloride uptake as well as inhibiting sulfate efflux, and under these experimental conditions, a linear relationship exists between SITS-sensitive, net chloride uptake and sulfate loss. The slope of this line is 1.05 (correlation coefficient = 0.996) which suggests the stoichiometry of Cl-SO4-(2) exchange is 1:1. Assuming a 1:1 stoichiometry, measurement of the initial chloride influx and initial sulfate efflux indicate that 92% of net chloride uptake is independent of sulfate efflux. Taken altogether, these results support the contention that the tumor cell possesses a permeability pathway which facilitates the exchange of one sulfate for one chloride. Under conditions where anion transport is not inhibited, this coupling is obscured by a second and quantitatively more important pathway for chloride uptake. This pathway is SITS-insensitive, although partially inhibited by furosemide.  相似文献   

9.
Summary Red blood cells of the marine teleost,Opsanus tau (oyster toadfish), were characterized as to their normal hemoglobin, ion and water contents. Cells were exposed to ouabain containing, hyposmotic salt solutions (osmolarity reduced to 2/3 of normal) in which the cation or anion composition was varied. It was found that the initial cell volume expansion due to water influx was independent of the anion present. However, a secondary volume reduction was dependent on the presence of chloride or bromide anions. During volume reduction, cellular potassium and chloride ion contents fell by about equal amounts. Potassium loss was commensurate to the total amount of potassium ions detected extracellularly about 1.5h after the initial osmotic shock. No major changes were seen in the cellular sodium ion contents. When chloride ions within the cells and in the suspending medium were replaced by nitrate, iodide or thiocyanate, the cells failed to return to volumes close to those of isosmotically suspended controls, and the cellular potassium content also remained constant. In hypotonic potassium chloride the cells failed to extrude potassium chloride and water, and hence retained their expanded volume. Neither potassium loss nor volume decrease occurred in cells swollen in hypotonic sodium chloride media containing furosemide or 4,4 diisothiocyano-2,2-stilbene-disulfonic acid (DIDS). These two compounds are known inhibitors of monovalent cation cotransport and anion self exchange, respectively, in mammalian red cells. Hence toadfish red cells respond to osmotic swelling primarily by activation of an ouabain-insensitive, chloride dependent potassium transport system which is sensitive to inhibition by furosemide and DIDS.  相似文献   

10.
Sodium and potassium ion contents and fluxes of isolated resting human peripheral polymorphonuclear leukocytes were measured. In cells kept at 37 degrees C, [Na]i was 25 mM and [K]i was 120 mM; both ions were completely exchangeable with extracellular isotopes. One-way Na and K fluxes, measured with 22Na and 42K, were all approximately 0.9 meq/liter cell water . min. Ouabain had no effect on Na influx or K efflux, but inhibited 95 +/- 7% of Na efflux and 63% of K influx. Cells kept at 0 degree C gained sodium in exchange for potassium ([Na]i nearly tripled in 3 h); upon rewarming, ouabain-sensitive K influx into such cells was strongly enhanced. External K stimulated Na efflux (Km approximately 1.5 mM in 140-mM Na medium). The PNa/PK permeability ratio, estimated from ouabain insensitive fluxes, was 0.10. Valinomycin (1 microM) approximately doubled PK. Membrane potential (Vm) was estimated using the potentiometric indicator diS-C3(5); calibration was based on the assumption of constant-field behavior. External K, but not Cl, affected Vm. Ouabain caused a depolarization whose magnitude dependent on [Na]i. Sodium-depleted cells became hyperpolarized when exposed to the neutral exchange carrier monensin; this hyperpolarization was abolished by ouabain. We conclude that the sodium pump of human peripheral neutrophils is electrogenic, and that the size of the pump-induced hyperpolarization is consistent with the membrane conductance (3.7-4.0 microseconds/cm2) computed from the individual K and Na conductances.  相似文献   

11.
Na movement across the plasma membranes of confluent monolayers of monkey kidney epithelial cells (BSC-1) was studied using 22Na+ uptake and efflux techniques in the presence of 10(-4) M ouabain. In the presence of 28 mM bicarbonate, uptake was inhibited by both 10(-3) M amiloride and 10(-3) M 4,4'diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). In DIDS-pretreated cells, 10(-3) M amiloride led to a further reduction of 22Na+ uptake, while 10(-5) furosemide was ineffective. DIDS also inhibited sodium efflux, indicating that the DIDS-sensitive pathway mediates both influx and efflux of 22Na+. DIDS-sensitive 22Na+ uptake, as studied in the presence of both 10(-4) M ouabain and 10(-3) M amiloride, was abolished by the absence of bicarbonate, which could not be substituted by other plasma membrane-permeable buffers. In 28 mM HCO3-, DIDS-sensitive uptake of 28 mM Na+ was cis-inhibited by 124 mM Na+, but no significant inhibition by K+ or Li+ was found. DIDS-sensitive 22Na+ uptake was a saturable function of both Na+ concentration (apparent Km between 20 and 40 mM at 28 mM HCO3-) and HCO3- concentration (apparent Km between 7 and 14 mM at 151 mM Na+). Intracellular microelectrode measurements showed that net Na+ transport in the presence of HCO3- is electrogenic, i.e. that there is anion cotransport with Na+. This effect is abolished by 1 mM DIDS. It is concluded that monkey kidney epithelial cells possess a stilbene-sensitive, electrogenic sodium bicarbonate symport, which may play an important role in bicarbonate reabsorption in the mammalian kidney.  相似文献   

12.
(1) Unidirectional K+ (86Rb) influx and efflux were measured in subconfluent layers of MDCK renal epithelial cells and HeLa carcinoma cells. (2) In both MDCK and HeLa cells, the furosemide-inhibitable and chloride-dependent component of K+ influx/efflux was stimulated 2-fold by a 30 min incubation in 1 . 10(-3) M ouabain. (3) Measurements of net K+ loss and Na+ gain in ouabain-treated cells at 1 h failed to show any diuretic sensitive component, confirming the exchange character of the diuretic-sensitive fluxes. (4) Prolonged incubations for 2.5 h in ouabain revealed a furosemide- and anion-dependent K+ (Cl-) outward net flux uncoupled from net Na+ movement. Net K+ (Cl-) outward flux was half-maximally inhibited by 2 microM furosemide. (5) After 2.5 h ouabain treatment, the anion and cation dependence of the diuretic-sensitive K+ influx/efflux were essentially unchanged when compared to untreated controls.  相似文献   

13.
When grown in medium containing 5 mM potassium and 140 mM sodium, HL-60, a human promyelocytic cell line, maintained a steady-state intracellular K+ concentration of 145 mmol/L cells and a steady-state intracellular Na+ concentration of 30 mmol/L cells. Nearly 90% of the unidirectional 42K+ influx could be inhibited by the cardiac glycoside ouabain with a Ki of 5 X 10(-8) M. This ouabain-sensitive component of influx rose as a saturating function of the extracellular K+ concentration with a K1/2 of 0.85 mM. The component of 42K+ influx resistant to ouabain inhibition was a linear function of the extracellular K+ concentration and was insensitive to inhibition by the diuretic furosemide. Unidirectional K+ efflux followed first order kinetics with a half-time of 55 min. Addition of 1.5% dimethyl sulfoxide (DMSO) to a culture of HL-60 cells allowed two population doublings followed by the cessation of growth without an impairment of cell viability. Beginning 2 to 3 days after DMSO addition, the cells underwent a dramatic reduction in volume (from 925 microns 3 to 500 microns 3) and began to take on the morphological features of mature granulocytes. Throughout this process of differentiation there was no change in the intracellular sodium or potassium concentration. However, immediately following the addition of DMSO to a culture of cells, there began an immediate, coordinated reduction in bidirectional K+ flux. The initial rate of the ouabain-sensitive component of K+ influx fell with a half-time of 11 h to a final rate, at 6 days induction, equal to one ninth that of the uninduced control, and over the same period, the rate constant for K+ efflux fell with a half-time of 14 h to a final value one fourth that of the uninduced control. The rapidity with which these flux changes occur raises the possibility that they play some role in the control of subsequent events in the process of differentiation.  相似文献   

14.
Synaptosomes incubated in a physiological saline extrude sodium and take up potassium. As would be expected this process is completely blocked by metabolic inhibitors such as cyanide and iodoacetate. However, when metabolic inhibitors are replaced by ouabain (100 μM) there is an increase in the steady state intrasynaptosomal sodium and chloride content even though there is no change in the potassium content. The increases are prevented when synaptosomes are incubated with metabolic inhibitors in addition to ouabain. There is therefore a ouabain-insensitive process that transports sodium, chloride and concomitantly water into synaptosomes. It appears not to function when the supply of metabolic energy is inhibited. The diuretic furosemide (1 mM) in the presence of ouabain inhibits the entry of sodium and chloride without affecting the intrasynaptosomal potassium concentration. Ethacrynic acid (1 mM) has a somewhat similar effect but in addition appears to damage the synaptosome membrane. Kinetic measurements were made of the uptake of sodium, potassium and chloride under conditions of metabolic inhibition and the permeability constants of the membrane determined. Values of 0.068, 0.117 and 0.032 × 10-6 (cm s-1) were found for the permeability constants of the membrane to (respectively) sodium, potassium and chloride. Measurements of the rate of uptake in the presence of ouabain revealed an inwardly directed sodium and chloride flux of 5-20 pmol cm-2 s-1. Calculation of the fluxes from the steady state ion concentrations also reveals an inwardly directed sodium and chloride flux, though of lesser magnitude. The influx of water is less than would be expected to preserve osmotic equality suggesting that the translocation of sodium and chloride is the primary event. Although its function remains uncertain the flux has a considerable effect on the ion content of synaptosomes.  相似文献   

15.
Harmaline inhibits K+ influx into primary cell cultures of ground squirrel kidneys to a greater extent than either ouabain or furosemide. A concentration of 200 μM harmaline was required to inhibit half of the total K+ influx; this effect was also seen at low temperature (5°C), and in another species (hamster). Although kinetic analysis of K+ influx indicates that harmaline does not compete with extracellular K+, harmaline did reduce the binding of [3H]ouabain to the cells. K+ efflux was also reduced. Therefore, harmaline may inhibit the furosemide-sensitive Na+/K+ cotransport system as well as the ouabain-sensitive Na+/K+ pump.  相似文献   

16.
Furosemide-inhibitable components in unidirectional cation fluxes have been identified in frog skeletal muscle. In sodium loaded muscles, placed in sodium-free rubidium lithium media, furosemide (1 mM) inhibits partially rubidium and lithium influxes as well as potassium and sodium outfluxes. The furosemide-inhibitable components were found to depend on the presence of ouabain. They were greatly diminished in sodium-free magnesium media and were present in chloride-free nitrate containing media. The dependence of furosemide-inhibitable sodium efflux on internal sodium content was also described.  相似文献   

17.
Calcium transport in intact human erthrocytes   总被引:3,自引:0,他引:3       下载免费PDF全文
Intact human erythrocytes can be readily loaded with calcium by incubation in hypersomotic media at alkaline pH. Erythrocyte calcium content increases from 15-20 to 120-150 nmol/g hemoglobin after incubation for 2 h at 20 degree C in a 400 mosmol/kg, pH 7.8 solution containing 100 mM sodium chloride, 90 mM tetramethylammonium chloride, 1 mM potassium chloride, and 10 mM calcium chloride. Calcium uptake is a time-dependent process that is associated with an augmented efflux of potassium. The ATP content in these cells remains at more than 60% of normal and is not affected by calcium. Calcium uptake is influenced by the cationic composition of the external media. The response to potassium is diphasic. With increasing potassium concentrations, the net accumulation of calcium initially increases, becoming maximal at 1 mM potassium, then diminishes, falling below basal levels at concentrations above 3 mM potassium. Ouabain inhibits the stimulatory effect of low concentrations of potassium. The inhibitory effects of higher concentrations of potassium are ouabain insensitive and independent of the external calcium concentration. Sodium also inhibits calcium uptake but this inhibition can be modified by altering the external concentration of calcium. The effux of calcium from loaded erythrocytes is not significantly altered by changes in osmolality, medium ion composition, or ouabain. It is concluded that hypertonicity increases the net uptake of calcium by increasing the influx of calcium and that some part of the sodium potassium transport system is involved in this influx process.  相似文献   

18.
19.
Changes of 42K efflux (J23K) caused by ouabain and/or furosemide were measured in isolated epithelia of frog skin. From the kinetics of 42K influx (J32K) studied first over 8-9 h, K+ appeared to be distributed into readily and poorly exchangeable cellular pools of K+. The readily exchangeable pool of K+ was increased by amiloride and decreased by ouabain and/or K+-free extracellular Ringer solution. 42K efflux studies were carried out with tissues shortcircuited in chambers. Ouabain caused an immediate (less than 1 min) increase of the 42K efflux to approximately 174% of control in tissues incubated either in SO4-Ringer solution or in Cl-Ringer solution containing furosemide. Whereas furosemide had no effect on J23K in control tissues bathed in Cl-rich or Cl-free solutions, ouabain induced a furosemide-inhibitable and time-dependent increase of a neutral Cl-dependent component of the J23K. Electroconductive K+ transport occurred via a single-filing K+ channel with an n' of 2.9 K+ efflux before ouabain, normalized to post-ouabain (+/- furosemide) values of short-circuit current, averaged 8-10 microA/cm2. In agreement with the conclusions of the preceding article, the macroscopic stoichiometry of ouabain-inhibitable Na+/K+ exchange by the pump was variable, ranging between 1.7 and 7.2. With increasing rates of transepithelial Na+ transport, pump-mediated K+ influx saturated, whereas Na+ efflux continued to increase with increases of pump current. In the usual range of transepithelial Na+ transport, regulation of Na+ transport occurs via changes of pump-mediated Na+ efflux, with no obligatory coupling to pump-mediated K+ influx.  相似文献   

20.
Sodium transport mechanisms were investigated in plasma membrane vesicles prepared from the medullary thick ascending limb of Henle's loop (TALH) of rabbit kidney. The uptake of 22Na into the plasma membrane vesicles was investigated by a rapid filtration technique. Sodium uptake was greatest in the presence of chloride; it was reduced when chloride was replaced by nitrate, gluconate or sulfate. The stimulation of sodium uptake by chloride was seen in the presence of a chloride gradient directed into the vesicle and when the vesicles were equilibrated with NaCl, KCl plus valinomycin so that no chemical or electrical gradients existed across the vesicle (tracer exchange experiments). Furosemide decreased sodium uptake into the vesicles in a dose-dependent manner only in the presence of chloride, with a Ki of around 5 X 10(-6) M. Amiloride, at 2 mM, had no effect on the chloride-dependent sodium uptake. Similarly, potassium removal had no effect on the chloride-dependent sodium uptake and furosemide was an effective inhibitor of sodium uptake in a potassium-free medium. The results show the presence of a furosemide-sensitive sodium-chloride cotransport system in the plasma membranes of the medullary TALH. There is no evidence for a Na+/H+ exchange mechanism or a Na+ -K+ -Cl- cotransport system. The sodium-chloride cotransport system would effect the uphill transport of chloride against its electrochemical potential gradient at the luminal membrane of the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号