首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants of the C4 tree species, Euphorbia forbesii, Sherff and the C3 tree species, Claoxylon sandwicense Muell-Arg., were grown in a full sun and a shade environment designed to simulate the understory of their native Hawiian forest habitat. When grown under shade conditions, both species exhibited a photosynthetic light response typical of shade plants with low light compensation points and low dark respiration rates. E. forbesii, however, exhibited greater acclimation of light saturated photosynthetic rates and no evidence of photoinhibition in high light. In contrast, quantum yields for CO2 uptake and chlorophyll contents were reduced in the high-light as compared to the low-light grown C. sandwicense plants. Both species exhibited similar changes in the intercellular CO2 response curves and chloroplast whole-chain electron transport capacities, suggesting that the underlying mechanisms of light acclimation are similar. Chloroplasts of E. forbesii exhibited large changes in ultrastructure, with much greater thylakoid membrane development in low than high light. In contrast, C. sandwicense exhibited different starch contents, but otherwise similar membrane development in high and low light. The results show that E. forbesii possesses a very flexible photosynthetic apparatus which may account for its ability to survive in the understory of shaded forests.Abbreviations gs = stomatal conductance - HL = high light - LL = low light - Pi = intercellular CO2 partial pressure - PFD = photon flux density  相似文献   

2.
Summary Field measurements of photosynthetic CO2 exchange were made on saplings of a C4 tree species, Euphorbia forbesii, and a C3 tree species, Claoxylon sandwicense, in a shaded mesic forest on Oahu, Hawaii. Both species had light responses typical of those generally found in shade plants. Light saturated photosynthetic rates were 7.15 and 4.09 mol m2 s1 and light compensation points were 6.3 and 1.7 mol m2 s1 in E. forbesii and C. sandwicense, respectively. E. forbesii maintained a higher mesophyll conductance and a higher water use efficiency than C. sandwicense as is typically found in comparisons of C4 and C3 plants. Under natural light regimes, both species maintained positive CO2 uptake rates over essentially the entire day because of low respiration rates and light compensation points. However, photosynthesis during sunflecks accounted for a large fraction of the daily carbon gain. The results show that the carbon-gaining capacity of E. forbesii is comparable to that of a C3 species in a moderately cool, shaded forest environment. There appears to be no particular advantage or disadvantage associated with the C4 photosynthetic pathway of E. forbesii in this environment.  相似文献   

3.
Gas exchange responses to rapid changes in light were studied in a C3 tree, Claoxylon sandwicense Muell-Arg and a C4 tree, Euphorbia forbesii Sherff that are native to the understory of a mesic Hawaiian forest. When light was increased to 500 micromoles per meter per second following a 2 hour preexposure at 22 micromoles per meter per second, net CO2 uptake rates and stomatal conductance gradually increased for over 1 hour in C. sandwicense but reached maximum values within 30 minutes in E. forbesii. Calculation of the intercellular CO2 pressures indicated that the primary limitation to CO2 uptake during this induction was nonstomatal in both species. The photosynthetic response to simulated sunflecks (lightflecks) was strongly dependent on the induction state of the leaf. Total CO2 uptake during a lightfleck was greater and the response was faster after exposure of the leaf to high light than when the leaf had been exposed only to low light for the previous 2 hours. During a series of lightflecks, induction resulted in increased CO2 uptake in successive lightflecks. Significant postillumination CO2 fixation was evident and contributed substantially to the total carbon gain, especially for lightflecks of 5 to 20 seconds' duration.  相似文献   

4.
A Comparison of Dark Respiration between C(3) and C(4) Plants   总被引:2,自引:2,他引:0       下载免费PDF全文
Byrd GT  Sage RF  Brown RH 《Plant physiology》1992,100(1):191-198
Lower respiratory costs were hypothesized as providing an additional benefit in C4 plants compared to C3 plants due to less investment in proteins in C4 leaves. Therefore, photosynthesis and dark respiration of mature leaves were compared between a number of C4 and C3 species. Although photosynthetic rates were generally greater in C4 when compared to C3 species, no differences were found in dark respiration rates of individual leaves at either the beginning or after 16 h of the dark period. The effects of nitrogen on photosynthesis and respiration of individual leaves and whole plants were also investigated in two species that occupy similar habitats, Amaranthus retroflexus (C4) and Chenopodium album (C3). For mature leaves of both species, there was no relationship between leaf nitrogen and leaf respiration, with leaves of both species exhibiting a similar rate of decline after 16 h of darkness. In contrast, leaf photosynthesis increased with increasing leaf nitrogen in both species, with the C4 species displaying a greater photosynthetic response to leaf nitrogen. For whole plants of both species grown at different nitrogen levels, there was a clear linear relationship between net CO2 uptake and CO2 efflux in the dark. The dependence of nightly CO2 efflux on CO2 uptake was similar for both species, although the response of CO2 uptake to leaf nitrogen was much steeper in the C4 species, Amaranthus retroflexus. Rates of growth and maintenance respiration by whole plants of both species were similar, with both species displaying higher rates at higher leaf nitrogen. There were no significant differences in leaf or whole plant maintenance respiration between species at any temperature between 18 and 42°C. The data suggest no obvious differences in respiratory costs in C4 and C3 plants.  相似文献   

5.
The endemic Hawaiian species of Scaevola and Euphorbia grow in a wide variety of native habitats and exhibit a wide range of variation in photosynthetic responses. Light-saturated photosynthetic capacities range from 12.0 to 24.7 μmol CO2 m−-2 s−-1 in the Scaevola species and from 18.2 to 51.4 μmol CO2 m−-2 s−-1 in the Euphorbia species. Within each genus, differences in light-saturated photosynthetic capacity are paralleled by differences in mesophyll and leaf conductances to CO2. Within each habitat, the C4 Euphorbia species exhibits a significantly higher photosynthetic capacity and a significantly higher mesophyll conductance than the corresponding C3 Scaevola species. These differences are greatest in the dry scrub habitat and least in the wet forest habitat. One photosynthetic characteristic that exhibits little variation among the species within each genus, yet that exhibits a consistently large difference between the species within each habitat, is photosynthetic water-use efficiency. The C4 Euphorbia species possess water-use efficiencies that are 2–3½ times as high as those of the C3 Scaevola species, regardless of whether these species are native to very dry or very wet habitats. At present, the ecological significance of this large inherent difference in photosynthetic water-use efficiency is unknown. Indeed, it appears that neither photosynthetic pathway has imposed any major inherent constraints on the ability of the Scaevola and Euphorbia species to diversify into a wide variety of habitats.  相似文献   

6.
Muhlenbergia sobolifera (Muhl.) Trin., a C4 grass, occurs in understory habitats in the northeastern United States. Plants of M. sobolifera were grown at 23 and 30°C at 150 and 700 μmol photons m−2 s−1. The photosynthetic CO2 compensation point, maximum CO2 assimilation, dark respiration and the absorbed quantum use efficiency (QUE) were measured at 23 and 30°C at 2 and 20% O2. Photosynthetic CO2 compensation points ranged from 4 to 14mm3 dm−3 CO2 and showed limited O2 sensitivity. The mean photosynthetic CO2 compensation point of plants grown at 30°C (4·5 mm3 dm−3) was 57% lower and 80% less inhibited by O2 than that of plants grown at 23°C. Photosynthesis was similarly affected by growth temperature, with 70% more O2 inhibition in plants grown at 23°C; suppression over all treatments ranging from 2 to 11%. Unlike typical C4 species, plants of M. sobolifera from both temperature regimes exhibited higher CO2 assimilation rates when grown at low light. Growth temperature and light also affected QUE; plants grown at low light and 23°C had the highest value (0·068 mol CO2/mol quanta). Measurement temperature and growth light regime significantly affected dark respiration; however, O2 did not affect QUE or dark respiration under any growth or measurement conditions. The results indicate that M. sobolifera is adapted to low PPFD, and that complete suppression of photorespiration is dependent upon high growth temperature.  相似文献   

7.
J. D. Tenhunen 《Oecologia》1982,53(3):310-316
Summary The gas exchange of leaves of Amaranthus retroflexus (C4) measured under fluctuating environmental conditions in an experimental garden in Würzburg was compared with that of Glycine max and Chenopodium album (C3). Consistent with previous observations, Amaranthus had higher leaf diffusion resistance than the C3 species and low internal air space carbon dioxide concentration. Due to high photosynthetic capacity, Amaranthus fixed as much carbon during the light as the C3 species, even at low temperatures and low light intensities. Low rates of dark respiration of leaves potentially enhances the ability of Amaranthus to grow rapidly after establishment in a disturbed habitat. The data suggest that some populations of Amaranthus retroflexus are adapted to cool climate conditions but are also able to exploit high temperature situations.  相似文献   

8.
Species in the Laxa and Grandia groups of the genus Panicum are adapted to low, wet areas of tropical and subtropical America. Panicum milioides is a species with C3 photosynthesis and low apparent photorespiration and has been classified as a C3/C4 intermediate. Other species in the Laxa group are C3 with normal photorespiration. Panicum prionitis is a C4 species in the Grandia group. Since P. milioides has some leaf characteristics intermediate to C3 and C4 species, its photosynthetic response to irradiance and temperature was compared to the closely related C3 species, P. laxum and P. boliviense and to P. prionitis. The response of apparent photosynthesis to irradiance and temperature was similar to that of P. laxum and P. boliviense, with saturation at a photosynthetic photo flux density of about 1 mmol m-2 s-1 at 30°C and temperature optimum near 30°C. In contrast, P. prionitis showed no light saturation up to 2 mmol m-2 s-1 and an optimum temperature near 40°C. P. milioides exhibited low CO2 loss into CO2-free air in the light and this loss was nearly insensitive to temperature. Loss of CO2 in the light in the C3 species, P. laxum and P. boliviense, was several-fold higher than in P. milioides and increased 2- to 5-fold with increases in temperature from 10 to 40°C. The level of dark respiration and its response to temperature were similar in all four Panicum species examined. It is concluded that the low apparent photorespiration in P. milioides does not influence its response of apparent photosynthesis to irradiance and temperature in comparison to closely related C3 Panicum species.Abbreviations AP apparent photosynthesis - I CO2 compensation point - gl leaf conductance; gm, mesophyll conductance - PPFD photosynthetic photon flux density - PR apparent photorespiration rate - RuBPC sibulose bisphosphate carboxylase  相似文献   

9.
Summary Common generalizations concerning the ecologic significance of C4 photosynthesis were tested in a study of plant gas exchange, productivity, carbon balance, and water use in monospecific communities of C3 and C4 salt desert shrubs. Contrary to expectations, few of the hypotheses concerning the performance of C4 species were supported. Like the C3 species, Ceratoides lanata, the C4 shrub, Atriplex confertifolia, initiated growth and photosynthetic activity in the cool spring months and also exhibited maximum photosynthetic rates at this time of year. To compete successfully with C3 species, Atriplex may have been forced to evolve the capacity for photosynthesis at low temperatures prevalent during the spring when moisture is most abundant. Maximum photosynthetic rates of Atriplex were lower than those of the C3 species. This was compensated by a prolonged period of low photosynthetic activity in the dry late summer months while Ceratoides became largely inactive. However, the annual photosynthetic carbon fixation per ground area was about the same in these two communities composed of C3 and C4 shrubs. The C4 species did not exhibit greater leaf diffusion resistance than the C3 species. The photosynthesis/transpiration ratios of the two species were about the same during the period of maximum photosynthetic rates in the spring. During the warm summer months the C4 species did have superior photosynthesis/transpiration ratios. Yet, since Ceratoides completed a somewhat greater proportion of its annual carbon fixation earlier in the season, the ratio of annual carbon fixation/transpiratory water loss in the two communities was about the same. Atriplex did incorporate a greater percentage of the annual carbon fixation into biomass production than did Ceratoides. However, this is considered to be a reflection of properties apart from the C4 photosynthetic pathway. Both species displayed a heavy commitment of carbon to the belowground system, and only about half of the annual moisture resource was utilized in both communities.  相似文献   

10.
Phenology, irradiance and temperature characteristics of a freshwater benthic red alga, Nemalionopsis tortuosa Yoneda et Yagi (Thoreales), were examined from Kagoshima Prefecture, southern Japan for the conservation of this endemic and endangered species. Field surveys confirmed that algae occurred in shaded habitats from winter to early summer, and disappeared during August through November. A net photosynthesis–irradiance (PE) model revealed that net photosynthetic rate quickly increased and saturated at low irradiances, where the saturating irradiance (Ek) and compensation irradiance (Ec) were 10 (8–12, 95% credible interval (CRI)) and 8 (6–10, 95% CRI) μmol photon m?2 s?1, respectively. Gross photosynthesis and dark respiration was determined over a range of temperatures (8–36°C) by dissolved oxygen measurements, and revealed that the maximum gross photosynthetic rate was highest at 29.5 (27.4–32.0, 95%CRI) °C. Dark respiration also increased linearly when temperature increased from 8°C to 36°C, indicating that the increase in dark respiration at higher temperature most likely caused decreases in net photosynthesis. The maximum quantum yield (Fv/Fm) that was determined using a pulse amplitude modulated‐chlorophyll fluorometer (Imaging‐PAM) was estimated to be 0.51 (0.50–0.52, 95%CRI) and occurred at an optimal temperature of 21.7 (20.1–23.4, 95%CRI) °C. This species can be considered well‐adapted to the relatively low natural irradiance and temperature conditions of the shaded habitat examined in this study. Our findings can be applied to aid in the creation of a nature‐reserve to protect this species.  相似文献   

11.
The photosynthetic and respiratory responses to irradiance, salinity and temperature of the red alga, Gracilaria vermiculophylla, collected from Kumamoto, Shizuoka and Iwate in Japan were studied using an electronic Dissolved Oxygen sensor. The parameters derived from the photosynthesis versus irradiance relationship indicated the potential to acclimate to broad irradiance variations in all of the populations of G. vermiculophylla collected from these three sites. In addition, the light-saturated photosynthesis rate (P max) and the dark respiration rate of all populations increased with increasing temperature up to 20–30°C, while the P max decreased at 35°C. All populations also showed a broad variation of photosynthetic responses to salinity changes in the range from 10 to 30 psu. On the other hand, the population from Iwate showed high photosynthetic efficiency, especially in the temperature range of 5–10°C, and showed low values of saturation irradiance compared to the populations from Shizuoka and Kumamoto. These results suggest that there is greater potential to acclimate to low irradiance and low temperature in the population from Iwate compared to those from the Shizuoka and Kumamoto populations. However, the P max of the populations from Iwate and Shizuoka was reached at 20°C and 25°C, respectively, while the Kumamoto population reached P max at 30°C. This implies that the latter population has greater potential to tolerate higher temperatures than the former. Such characteristics in photosynthesis and respiration of G. vermiculophylla collected from the three locations probably indicate an acclimation to prevailing environmental conditions in their respective habitats.  相似文献   

12.
Summary Four endemic Hawaiian Euphorbia species range in habitat from open arid coastal strand to shaded mesic forest and in growth-form from small prostrate shrubs to trees. As shown in the present study, these large differences in habitat and growth-form are paralleled by equally large differences in maximal photosynthetic rate (13.7 to 37.1 mol CO2 m-2s-1), dark respiration rate (0.7 to 4.1 mol CO2 m-2s-1), light level for saturation of photosynthesis (0.9 to over 2.0 mmol m-2s-1), light compensation point (0.01 to 0.11 mmol m-2s-1), leaf conductance to CO2 (1.7 to 4.9 mm s-1), and mesophyll conductance to CO2 (3.7 to 8.5 mm s-1). A principal consequence of this differentiation is that the capacity for photosynthesis at high light levels is higher in open site species, such as E. celastroides and E. degeneri, and at low light levels is higher in shade species, such as E. forbesii. E. hillebrandii, a species from intermediate semiopen habitats, exhibits an intermediate photosynthetic capacity at both high and low light levels. Despite this remarkable diversity, all four species exhibit the distinguishing physiological features of C4 photosynthesis.  相似文献   

13.
Nannochloropsis sp. was grown to the exponential phase and transferred to the high CO2 (2,800 μl l−1) and irradiance (100 μmol photons m−2 s−1) condition with different levels of nitrate and phosphate for 72 h, then the photosynthetic activity and inorganic carbon acquisition of the alga were measured. The apparent photosynthetic efficiency (α) of Nannochloropsis sp. decreased with increasing NO3 concentration from 150 to 3,000 μM, and the high nitrate-grown cells showed the lowest levels of light-saturated photosynthetic rate (P m), while the low nitrate-grown cells showed the highest levels of dark respiration rate (R d). The maximal light-saturated photosynthetic rate and the minimal dark respiration rate were seen under the middle nitrate condition. When the nitrate concentration ranged from 150 to 3,000 μM, the affinity for inorganic carbons of Nannochloropsis sp. increased sharply with the increasing NO3 concentration to 300 μM and then decreased significantly. The middle phosphate-grown cells exhibited the highest light-saturated photosynthetic rate and apparent photosynthetic efficiency, however, the affinity for inorganic carbons of Nannochloropsis sp. was the maximum under the low phosphate condition. It was shown that the appropriate nitrogen and phosphorus levels were of vital importance to the photosynthesis of cells.  相似文献   

14.
Summary According to carbon isotope ratios, species of the Sempervivoideae from Teneriffe show in general a tendency for increased participation of dark CO2 fixation via PEP-carboxylase in total carbon fixation as habitats become drier and warmer. Certain species are found in cool moist habitats and exhibit C3-like 13C values. Other species occur in warm dry habitats and exhibit 13C values which indicate strong Crassulacean Acid Metabolism. A third group of species shows intermediate 13C values which are more C3-like in cool moist habitats and which indicate increased dark fixation in warmer and drier situations. Included in this group is Aeonium holochrysum, which of the Sempervivoideae of Teneriffe is thought to be most closely related to the common ancestor (Lems 1960). Comparison of CO2 gas exchange of several species under identical environmental conditions reveals differences among species in the ability to regulate CO2 fixation in the light and in the dark which may have arisen in the process of adaptive radiation.  相似文献   

15.
When nitrogen fixing cell cultures of Synechococcus RF-1 were subjected to an alternating lightdark regime (12 h:12 h), a cyclic decrease in the photosynthetic oxygen evolution potential was observed during the dark periods. This rhythm of net photosynthesis rate was maintained for at least two days after transition to continuous light. The decrease in net photosynthesis was accompanied by a stimulation of dark respiration. However, the magnitude of oxygen uptake was considerably smaller than the observed decrease in oxygen evolution. The photosynthetic activity of cells taken from the dark period was characterized by (i) a significantly lower quantum yield and (ii) a strong reduction in the light-saturated rate of photosynthesis. Growing the cultures on nitrate or under continuous light completely suppressed this rhythm. Protein synthesis was not necessary for the recovery of the light-saturated rate of photosynthesis during the light period. The cellular content of chlorophyll a and of phycobiliproteins did not vary between light and dark period, indicating that quantitative changes in the composition of the photosynthetic apparatus are not the basis for the observed oscillations. Regulatory modifications of the photosynthetic efficiency are proposed as an adaptation mechanism to adjust the intracellular oxygen concentration to the needs for nitrogenase activity.Abbreviation Chl chlorophyll  相似文献   

16.
The photosynthetic performance of C4 plants is generally inferior to that of C3 species at low temperatures, but the reasons for this are unclear. The present study investigated the hypothesis that the capacity of Rubisco, which largely reflects Rubisco content, limits C4 photosynthesis at suboptimal temperatures. Photosynthetic gas exchange, chlorophyll a fluorescence, and the in vitro activity of Rubisco between 5 and 35 °C were measured to examine the nature of the low‐temperature photosynthetic performance of the co‐occurring high latitude grasses, Muhlenbergia glomerata (C4) and Calamogrostis canadensis (C3). Plants were grown under cool (14/10 °C) and warm (26/22 °C) temperature regimes to examine whether acclimation to cool temperature alters patterns of photosynthetic limitation. Low‐temperature acclimation reduced photosynthetic rates in both species. The catalytic site concentration of Rubisco was approximately 5.0 and 20 µmol m?2 in M. glomerata and C. canadensis, respectively, regardless of growth temperature. In both species, in vivo electron transport rates below the thermal optimum exceeded what was necessary to support photosynthesis. In warm‐grown C. canadensis, the photosynthesis rate below 15 °C was unaffected by a 90% reduction in O2 content, indicating photosynthetic capacity was limited by the capacity of Pi‐regeneration. By contrast, the rate of photosynthesis in C. canadensis plants grown at the cooler temperatures was stimulated 20–30% by O2 reduction, indicating the Pi‐regeneration limitation was removed during low‐temperature acclimation. In M. glomerata, in vitro Rubisco activity and gross CO2 assimilation rate were equivalent below 25 °C, indicating that the capacity of the enzyme is a major rate limiting step during C4 photosynthesis at cool temperatures.  相似文献   

17.
Summary CO2 exchange characteristics and the activity of the carboxylating enzymes phosphoenolpyruvate carboxylase (PEP-C, E.C. 4.1.1.31) and ribulose 1,5-bisphosphate carboxylase (RuBP-C, E.C. 4.1.1.39) during one year in the greenhouse and at two levels of light and temperature in growth chambers were determined in the C3-C4 intermediate species P. milioides Nees ex. Trin. These results were compared with those of P. bisulcatum Thumb. (C3) and P. maximum Jacq. (C4). Under all tested conditions, and even when the influence of leaf surface temperature on photosynthetic rates and CO2 compensation points were measured, the biochemical and physiological behaviour of the C3-C4 intermediate was more similar to that of the C3 plant than the C4 species. The C4 plant P. maximum, however, responded positively, mainly in terms of PEP-C activity and photosynthetic rate, to the regime of high light and temperature. The results presented indicate that in the C3-C4 Panicum grown in high light and temperature no direct relationships between a low CO2 compesation point and superior growth are evident. It has still to be clarified why in nature a photosynthetic-photorespiratory pathway leading to an intermediate CO2 compensation value has evolved in P. milioides.  相似文献   

18.
Summary Mono-specific communities of the C3 sedge, Scirpus olneyi and the C4 grass, Spartina patens, were exposed to normal ambient or elevated CO2, (ca. 680 l l–1) throughout the 1987 and 1988 growing seasons in open-top field chambers located on a tidal marsh. Single stems of C3 plants grown in ambient or elevated CO2 showed an increased photosynthetic rate when tested at elevated CO2 for both seasons. This increase in photosynthetic response in the C3 species was maintained throughout the 1987 and 1988 growing season. The stimulation of photosynthesis with elevated CO2 appeared to increase as temperature increased and decreased as photosynthetic photon flux (PPF) increased. Analysis of the photosynthetic response of the C3 species during the 1988 season indicated that significant differences in light-saturated photosynthetic rate between ambient and elevated CO2 conditions continued until October. In contrast to the C3 sedge, the C4 grass showed no significant photosynthetic increase to elevated CO2 except at the beginning of the 1988 season.  相似文献   

19.
Summary The implications of a reduced quantum yield (initial slope of the photosynthetic light response curve) in C4 plants and temperature dependence of quantum yield in C3 plants on total canopy primary production were investigated using computer simulations. Since reduced quantum yield represents the only known disadvantage of the C4 photosynthetic pathway, simulations were conducted with grass canopies (high LAI and hence photosynthesis in most leaves will be light-limited) to see if quantum yield is a significant factor in limiting the primary production and thus distributions of C4 grasses. Simulations were performed for three biogeographical or environmental conditions: the Great Plains region of North America, the Sonoran Desert of North America, and shade habitats. For all three cases, the simulations predicted either spatial or temporal gradients in the abundances of C4 grasses identical to the abundance patterns of C4 grasses observed in the field. It is thus concluded that while the C4 photosynthetic mechanism may be highly advantageous in specific environments, it may be disadvantageous in others.C.I.W.-D.P.B. Publication No. 598  相似文献   

20.
The capacity of Argyroxiphium sandwicense (silverword) seedlings to acclimate photosynthetic processes to different growing temperatures, as well as the tolerance of A. sandwicense to temperatures ranging from –15 to 60° C, were analyzed in a combination of field and laboratory studies. Altitudinal changes in temperature were also analyzed in order to explain the observed spatial distribution of A. sandwicense. A. sandwicense (Asteraceae) is a giant rosette plant that grows at high elevation on two Hawaiian volcanoes, where nocturnal subzero temperatures frequently occur. In addition, the soil temperatures at midday in the open alpine vegetation can exceed 60° C. In marked contrast to this large diurnal temperature variation, the seasonal variation in temperature is very small due to the tropical maritime location of the Hawaiian archipelago. Diurnal changes of soil and air temperature as well as photosynthetic photon flux density were measured on Haleakala volcano during four months. Seedlings were grown in the laboratory, from seeds collected in ten different A. sandwicense populations on Haleakala volcano, and maintained in growth chambers at 15/5, 25/15, and 30/25° C day/night temperatures. Irreversible tissue damage was determined by measuring electrolyte leakage of leaf samples. For seedlings maintained at each of the three different day/night temperatures, tissue damage occurred at –10° C due to freezing and at about 50° C due to high temperatures. Tissue damage occurred immediately after ice nucleation suggesting that A. sandwicense seedlings tend to avoid ice formation by permanent supercooling. Seedlings maintained at different day/night temperatures had similar maximum photosynthetic rates (5 mol m–2 s–1) and similar optimum temperatures for photosynthesis (about 16° C). Leaf dark respiration rates compared at identical temperatures, however, were substantially higher for seedlings maintained at low temperatures, but almost perfect homeostasis is observed when compared at their respective growing conditions. The lack of acclimation in terms of frost resistance and tolerance to high temperatures, as well as in terms of the optimum temperature for photosynthesis, may contribute to the restricted altitudinal range of A. sandwicense. The small seasonal temperature variations in the tropical environment where this species grows may have prevented the development of mechanisms for acclimation to longterm temperature changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号