首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
NADP is a key electron carrier for a broad spectrum of redox reactions, including photosynthesis. Hence, chloroplastic NADP status, as represented by redox status (ratio of NADPH to NADP+) and pool size (sum of NADPH and NADP+), is critical for homeostasis in photosynthetic cells. However, the mechanisms and molecules that regulate NADP status in chloroplasts remain largely unknown. We have now characterized an Arabidopsis mutant with imbalanced NADP status (inap1), which exhibits a high NADPH/NADP+ ratio and large NADP pool size. inap1 is a point mutation in At2g04700, which encodes the catalytic subunit of ferredoxin/thioredoxin reductase. Upon illumination, inap1 demonstrated earlier increases in NADP pool size than the wild type did. The mutated enzyme was also found in vitro to inefficiently reduce m‐type thioredoxin, which activates Calvin cycle enzymes, and NADP‐dependent malate dehydrogenase to export reducing power to the cytosol. Accordingly, Calvin cycle metabolites and amino acids diminished in inap1 plants. In addition, inap1 plants barely activate NADP‐malate dehydrogenase, and have an altered redox balance between the chloroplast and cytosol, resulting in inefficient nitrate reduction. Finally, mutants deficient in m‐type thioredoxin exhibited similar light‐dependent NADP dynamics as inap1. Collectively, the data suggest that defects in ferredoxin/thioredoxin reductase and m‐type thioredoxin decrease the consumption of NADPH, leading to a high NADPH/NADP+ ratio and large NADP pool size. The data also suggest that the fate of NADPH is an important influence on NADP pool size.  相似文献   

2.
Enzymes that are regulated by the ferredoxin/thioredoxin system in chloroplasts — fructose-1,6-bisphosphatase (FBPase), sedoheptulose-1,7-bisphosphatase purified from two different types of photosynthetic prokaryotes (cyanobacteria, purple sulfur bacteria) and tested for a response to thioredoxins. Each of the enzymes from the cyanobacterium Nostoc muscorum, an oxygenic organism known to contain the ferredoxin/thioredoxin system, was activated by thioredoxins that had been reduced either chemically by dithiothreitol or photochemically by reduced ferredoxin and ferredoxin-thioredoxin reductase. Like their chloroplast counterparts, N. muscorum FBPase and SBPase were activated preferentially by reduced thioredoxin f. SBPase was also partially activated by thioredoxin m. PRK, which was present in two regulatory forms in N. muscorum, was activated similarly by thioredoxins f and m. Despite sharing the capacity for regulation by thioredoxins, the cyanobacterial FBPase and SBPase target enzymes differed antigenically from their chloroplast counterparts. The corresponding enzymes from Chromatium vinosum, an anoxygenic photosynthetic purple bacterium found recently to contain the NADP/thioredoxin sytem, differed from both those of cyanobacteria and chloroplasts in showing no response to reduced thioredoxin. Instead, C. vinosum FBPase, SBPase, and PRK activities were regulated by a metabolite effector, 5-AMP. The evidence is in accord with the conclusion that thioredoxins function in regulating the reductive pentose phosphate cycle in oxygenic prokaryotes (cyanobacteria) that contain the ferredoxin/thioredoxin system, but not in anoxygenic prokaryotes (photosynthetic purple bacteria) that contain the NADP/thioredoxin system. In organisms of the latter type, enzyme effectors seem to play a dominant role in regulating photosynthetic carbon dioxide assimilation.  相似文献   

3.
Here, we report the NMR solution structures of Mycobacterium tuberculosis (M. tuberculosis) thioredoxin C in both oxidized and reduced states, with discussion of structural changes that occur in going between redox states. The NMR solution structure of the oxidized TrxC corresponds closely to that of the crystal structure, except in the C‐terminal region. It appears that crystal packing effects have caused an artifactual shift in the α4 helix in the previously reported crystal structure, compared with the solution structure. On the basis of these TrxC structures, chemical shift mapping, a previously reported crystal structure of the M. tuberculosis thioredoxin reductase (not bound to a Trx) and structures for intermediates in the E. coli thioredoxin catalytic cycle, we have modeled the complete M. tuberculosis thioredoxin system for the various steps in the catalytic cycle. These structures and models reveal pockets at the TrxR/TrxC interface in various steps in the catalytic cycle, which can be targeted in the design of uncompetitive inhibitors as potential anti‐mycobacterial agents, or as chemical genetic probes of function. © Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Fructose 1,6-bisphosphatase (FBPase) and phosphoribulokinase (PRK) are two key enzymes of the reductive pentose phosphate pathway or Calvin cycle of photosynthetic carbon dioxide assimilation. Early studies had indicated that the properties of enzymes isolated from photosynthetic bacteria were clearly distinct from those of enzymes obtained from the chloroplasts of higher plants [for a review, see Tabita (1988)]. The eucaryotic enzymes, which are light activated by the thioredoxin/ferredoxin system (Buchanan, 1980), were each shown to contain a putative regulatory amino acid sequence (Marcus et al., 1988; Porter et al., 1988). The enzymes from photosynthetic bacteria are not controlled by the thioredoxin/ferredoxin system but exhibit complex kinetic properties and, in the case of PRK, there is an absolute requirement of NADH for activity. In the photosynthetic bacterium Rhodobacter sphaeroides, the structural genes of the Calvin cycle, including the genes that encode FBPase (fbp) and PRK (prk), are found in two distinct clusters, and the fbp and prk genes are closely associated in each cluster. In the present investigation, we have determined the nucleotide sequence of the fbpB and prkB genes of the form II cluster and have compared the deduced amino acid sequences to previously determined sequences of light-activated enzymes from higher plants and from other eucaryotic and procaryotic sources. In the case of FBPase, there are several regions that are conserved in the R. sphaeroides enzymes, including a protease-sensitive area located in a region equivalent to residues 51-71 of mammalian FBPase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Rice root glutamate synthase activity was assayed with various reducing systems. Ferredoxin-dependent glutamate synthase (EC 1.4.7.1) and pyridine nucleotide-dependent glutamate synthase (NADH, EC 1.4.1.14; or NADPH, EC 1.4.1.13) exhibited a strict specificity for the electron donor. The ferredoxin-dependent glutamate synthase from rice roots could accept electrons from photoreduced ferredoxin in an illuminated reconstituted spinach chloroplast system. Thioredoxin, a potent electron carrier, was not able to provide either ferredoxin-dependent or pyridine nucleotide-dependent glutamate synthase with electrons as no glutamate formation was detected in the presence of reduced thioredoxin f or m.  相似文献   

6.
7.
秦童  黄震 《植物学报》2019,54(1):119-132
硫氧还蛋白(Trx)属于巯基-二硫键氧化还原酶家族, 通过作用于底物蛋白侧链2个半胱氨酸残基之间的二硫键(还原、异构和转移)来调控胞内蛋白的结构和功能。叶绿体Trx系统包括Trx及Trx类似蛋白、铁氧还蛋白(Fd)依赖的硫氧还蛋白还原酶(FTR)和还原型烟酰腺嘌呤二核苷磷酸(NADPH)依赖的硫氧还蛋白还原酶C (NTRC)。除了基质蛋白酶类活性变化及叶绿体蛋白的转运受Trx系统调控之外, 在叶绿体中还存在1条跨类囊体膜的还原势传递途径, 把基质Trx的还原势经跨膜转运蛋白介导, 最终传递给类囊体腔蛋白。FTR和NTRC共同作用维持叶绿体的氧化还原平衡。该文对叶绿体硫氧还蛋白系统的调节机制进行了综述, 同时讨论了叶绿体硫氧还蛋白系统对维持植物光合效率的重要意义。  相似文献   

8.
The thioredoxin system is a ubiquitous oxidoreductase system consisting of the enzyme thioredoxin reductase, the protein thioredoxin, and the cofactor nicotinamide adenine dinucleotide phosphate. The system has been comprehensively studied from many organisms, such as Escherichia coli; however, structural and functional analysis of this system from psychrophilic bacteria has not been as extensive. In this study, the thioredoxin system proteins of a psychrophilic bacterium, Colwellia psychrerythraea, were characterized using biophysical and biochemical techniques. Analysis of the complete genome sequence of the C. psychrerythraea thioredoxin system suggested the presence of a putative thioredoxin reductase and at least three thioredoxin. In this study, these identified putative thioredoxin system components were cloned, overexpressed, purified, and characterized. Our studies have indicated that the thioredoxin system proteins from E. coli were more stable than those from C. psychrerythraea. Consistent with these results, kinetic assays indicated that the thioredoxin reductase from E. coli had a higher optimal temperature than that from C. psychrerythraea.  相似文献   

9.
Thioredoxin and NADP-thioredoxin reductase from cultured carrot cells   总被引:7,自引:0,他引:7  
Dark-grown carrot (Daucus carota L.) tissue cultures were found to contain both protein components of the NADP/thioredoxin system—NADP—thioredoxin reductase and the thioredoxin characteristic of heterotrophic systems, thioredoxin h. Thioredoxin h was purified to apparent homogeneity and, like typical bacterial counterparts, was a 12-kdalton (kDa) acidic protein capable of activating chloroplast NADP-malate dehydrogenase (EC 1.1.1.82) more effectively than fructose-1,6-bisphosphatase (EC 3.1.3.11). NADP-thioredoxin reductase (EC 1.6.4.5) was partially purified and found to be an arsenite-sensitive enzyme composed of two 34-kDa subunits. Carrot NADP-thioredoxin reductase resembled more closely its counterpart from bacteria rather than animal cells in acceptor (thioredoxin) specificity. Upon greening of the cells, the content of NADP-thioredoxin-reductase activity, and, to a lesser extent, thioredoxin h decreased. The results confirm the presence of a heterotrophic-type thioredoxin system in plant cells and raise the question of its physiological function.Abbreviations DTNB dithiolbis(2-nitrobenzoic acid) - FBPase fructose-1,6-bisphosphatase - FTR terredoxin-thioredoxin, reductase - NADP-MDH NADP-malate dehydrogenase - NTR NADP-thioredoxin reductase - SDS sodium-dodecyl sulfate  相似文献   

10.
Thioredoxin was isolated from a photosynthetic purple nonsulfur bacterium, Rhodospirillum rubrum, and its primary structure was determined by high-performance tandem mass spectrometry. The sequence identity of R. rubrum thioredoxin to Escherichia coli thioredoxin was intermediate to those of the Chlorobium thiosulfatophilum and Chromatium vinosum proteins. The results indicate that R. rubrum has an NADP-thioredoxin system similar to that of other photosynthetic purple bacteria.  相似文献   

11.
Uncovered in studies on photosynthesis 35 years ago, redox regulation has been extended to all types of living cells. We understand a great deal about the occurrence, function, and mechanism of action of this mode of regulation, but we know little about its origin and its evolution. To help fill this gap, we have taken advantage of available genome sequences that make it possible to trace the phylogenetic roots of members of the system that was originally described for chloroplasts—ferredoxin, ferredoxin:thioredoxin reductase (FTR), and thioredoxin as well as target enzymes. The results suggest that: (1) the catalytic subunit, FTRc, originated in deeply rooted microaerophilic, chemoautotrophic bacteria where it appears to function in regulating CO2 fixation by the reverse citric acid cycle; (2) FTRc was incorporated into oxygenic photosynthetic organisms without significant structural change except for addition of a variable subunit (FTRv) seemingly to protect the Fe–S cluster against oxygen; (3) new Trxs and target enzymes were systematically added as evolution proceeded from bacteria through the different types of oxygenic photosynthetic organisms; (4) an oxygenic type of regulation preceded classical light–dark regulation in the regulation of enzymes of CO2 fixation by the Calvin–Benson cycle; (5) FTR is not universally present in oxygenic photosynthetic organisms, and in certain early representatives is seemingly functionally replaced by NADP-thioredoxin reductase; and (6) FTRc underwent structural diversification to meet the ecological needs of a variety of bacteria and archaea.  相似文献   

12.
Thioredoxins, by reducing disulfide bridges are one of the main participants that regulate cellular redox balance. In plants, the thioredoxin system is particularly complex. The most well-known thioredoxins are the chloroplastic ones, that participate in the regulation of enzymatic activities during the transition between light and dark phases. The mitochondrial system composed of NADPH-dependent thioredoxin reductase and type o thioredoxin has only recently been described. The type h thioredoxin group is better known. Yeast complementation experiments demonstrated that Arabidopsis thaliana thioredoxins h have divergent functions, at least in Saccharomyces cerevisiae. They have diverse affinities for different target proteins, most probably because of structural differences. However, plant thioredoxin h functions still have to be defined.  相似文献   

13.
The role of the ferredoxin:thioredoxin system in the reversible light activation of chloroplast enzymes by thiol-disulfide interchange with thioredoxins is now well established. Recent fruitful collaboration between biochemists and structural biologists, reflected by the shared authorship of the paper, allowed to solve the structures of all of the components of the system, including several target enzymes, thus providing a structural basis for the elucidation of the activation mechanism at a molecular level. In the present Review, these structural data are analyzed in conjunction with the information that was obtained previously through biochemical and site-directed mutagenesis approaches. The unique 4Fe-4S cluster enzyme ferredoxin:thioredoxin reductase (FTR) uses photosynthetically reduced ferredoxin as an electron donor to reduce the disulfide bridge of different thioredoxin isoforms. Thioredoxins in turn reduce regulatory disulfides of various target enzymes. This process triggers conformational changes on these enzymes, allowing them to reach optimal activity. No common activation mechanism can be put forward for these enzymes, as every thioredoxin-regulated protein undergoes specific structural modifications. It is thus important to solve the structures of the individual target enzymes in order to fully understand the molecular mechanism of the redox regulation of each of them.  相似文献   

14.
目的:利用基因工程的方法原核表达无标签的重组人硫氧还蛋白(rhTrx)并对其进行大规模表达、纯化和鉴定.方法:从人胚胎肾HEK293细胞中提取总RNA,反转录合成cDNA,经PCR扩增、酶切后连入pET-22b(+)载体构建重组质粒,重组质粒转化大肠杆菌BL21( DE3)感受态细胞,IPTG诱导表达,经两步离子交换层析纯化重组蛋白,采用SDS-PAGE、Western blotting、HPLC、MALDI-TOF-MS及经典的胰岛素二硫键还原法对重组蛋白进行鉴定.结果:构建成功了rhTrx基因表达载体;实现了rhTrx在原核细胞中的可溶性表达;纯化出的蛋白经SDS-PAGE和Western blotting分析证实为rhTrx;HPLC和MALDI-TOF-MS分析表明,纯化出的目的蛋白纯度大于95%;胰岛素二硫键还原法证实纯化出的rhTrx具有生物学活性.结论:成功构建了rhTrx的原核表达体系,建立了rhTrx的纯化和鉴定方法,为其进一步的理论研究和生产开发提供了有效基础数据.  相似文献   

15.
Thioredoxin, a small redox protein with an active site disulfide/dithiol, is ubiquitous in bacteria, plants, and animals and functions as a reducing agent and modulator of enzyme activity. A thioredoxin has been purified to electrophoretic homogeneity from the leaves ofArabidopsis thaliana using procedures such as DE-52 ion exchange chromatography, Sephadex G-50 gel filtration, Q-Sepharose ion exchange chromatography, and DEAE-Sephadex A-25 chromatography. The purified thioredoxin was determined to be a single band on SDS-PAGE, and its molecular weight was estimated to be 21 KDa, which was much larger than those of most other known thioredoxins. It was proved to be an f-type thioredoxin, since it could activate fructose-l,6-bisphosphatase, but it could not activate NADP+-malate dehydrogenase. As a protein disulfide reductase, it could reduce the disulfide bonds contained in insulin. As a substrate, it showed a Km value of 20.2 μM onEscherichia coli thioredoxin reductase, and it had an optimal pH of 8.0. The molecular weight of the purified f-type thioredoxin is not consistent with those of the five divergent h-type thioredoxins already identified by cDNA cloning. The purified f-type thioredoxin is the first example isolated fromA. thaliana.  相似文献   

16.
Nitrogen fixation and hydrogen metabolism in photosynthetic bacteria.   总被引:9,自引:0,他引:9  
J Meyer  B C Kelley  P M Vignais 《Biochimie》1978,60(3):245-260
The photosynthetic bacteria are found in a wide range of specialized aquatic environments. These bacteria represent important members of the microbial community since they are capable of carrying out two of the most important processes on earth, namely, photosynthesis and nitrogen fixation, at the expense of solar energy. Since the discovery that these bacteria could fix atmospheric nitrogen, there has been an intensification of studies relating to both the biochemistry and physiology of this process. The practical importance of this field is emphasized by a consideration of the tremendous energy input required for the production of artificial nitrogenous fertilizer. The present communication aims to briefly review the current state of knowledge relating to certain aspects of nitrogen fixation by the photosynthetic bacteria. The topics that will be discussed include a general survey of the nitrogenase system in the various photosynthetic bacteria, the regulation of both nitrogenase biosynthesis and activity, recent advances in the genetics of the nitrogen fixing system, and the hydrogen cycle in these bacteria. In addition, a brief discussion of some of some of the possible practical applications provided by the photosynthetic bacteria will be presented.  相似文献   

17.
The expression of the genes encoding the ferredoxin-thioredoxin system including the ferredoxin-thioredoxin reductase (FTR) genes ftrC and ftrV and the four different thioredoxin genes trxA (m-type; sir0623), trxB (x-type; sir1139), trxC (sll1057) and trxQ (y-type; sir0233) of the cyanobacterium Synechocystis sp. PCC 6803 has been studied according to changes in the photosynthetic conditions. Experiments of light-dark transition indicate that the expression of all these genes except trxQ decreases in the dark in the absence of glucose in the growth medium. The use of two electron transport inhibitors, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p- benzoquinone (DBMIB), reveals a differential effect on thioredoxin genes expression being trxC and trxQ almost unaffected, whereas trxA, trxB, and the ftr genes are down-regulated. In the presence of glucose, DCMU does not affect gene expression but DBMIB still does. Analysis of the single TrxB or TrxQ and the double TrxB TrxQ Synechocystis mutant strains reveal different functions for each of these thioredoxins under different growth conditions. Finally, a Synechocystis strain was generated containing a mutated version of TrxB (TrxBC34S), which was used to identify the potential in-vivo targets of this thioredoxin by a proteomic analysis.  相似文献   

18.
19.
Thioredoxin reductase (TR) and thioredoxin constitute a major cellular redox system present in all organisms. In contrast to a single form of thioredoxin, there are two TR types: One (bacterial type or small TR) is present in bacteria, archaea, plants, and most unicellular eukaryotes, whereas the second (animal or large TR) is only found in animals and typically contains a carboxy-terminal penultimate selenocysteine encoded by TGA. Surprisingly, we detected sequences of large TRs in various unicellular eukaryotes. Moreover, green algae Chlamydomonas reinhardtii had both small and large TRs, with the latter being a selenoprotein, but no examples of horizontal gene transfer from animals to the green algae could be detected. In addition, phylogenetic analyses revealed that large TRs formed a subgroup of lower eukaryotic glutathione reductases (GRs). The data suggest that the large TR evolved in a lower eukaryote capable of selenocysteine insertion rather than in an animal. The enzyme appeared to evolve by a carboxy-terminal extension of GR such that the resulting carboxy-terminal glutathionelike peptide became an intramolecular substrate for GR and a reductant for thioredoxin. Subsequently, small TRs were lost in an organism that gave rise to animals, large TRs were lost in plants and fungi, and selenocysteine/cysteine replacements took place in some large TRs. Our data implicate carboxy-terminal extension of proteins as a general mechanism of evolution of new protein function.  相似文献   

20.
The fraction of cell thiol proteins in the oxidized disulfide form were quantified during mitogen-induced HaCaT keratinocyte growth initiation. Oxidized thioredoxin increased from 11 +/- 1.2% in resting cells to 80 and 61% 2 min after addition of bradykinin or EGF. Thioredoxin oxidation was transient returning toward normal values by 20 min. The disulfide forms of other cellular proteins rose in parallel with thioredoxin oxidation. The oxidation of thioredoxin depended on a rise in cytosolic calcium. It was prevented by preloading cells with BAPTA, a Ca(2+) chelator and induced by addition of Ca(2+)-ionophore A23187 or of thapsigargin. In cell extracts, thioredoxin reductase was inhibited by micromolar calcium. The rise in cytosolic Ca(2+) led to a concomitant burst of H(2)O(2) formation. The oxidizing intracellular milieu suggests that redox regulation actively participates in the growth initiation cascade. The role of peroxiredoxins and ASK 1 cascade activation are discussed in this context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号