首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A functional circadian clock has long been considered a selective advantage. Accumulating evidence shows that the clock coordinates a variety of physiological processes in order to schedule them to the optimal time of day and thus to synchronize metabolism to changes in external conditions. In mitochondria, both metabolic and cellular defense mechanisms are carefully regulated. Abnormal clock function, might influence mitochondrial function, resulting in decreased fitness of an organism.  相似文献   

2.
3.
Photons, clocks, and consciousness   总被引:6,自引:0,他引:6  
Light profoundly impacts human consciousness through the stimulation of the visual system and powerfully regulates the human circadian system, which, in turn, has a broad regulatory impact on virtually all tissues in the body. For more than 25 years, the techniques of action spectroscopy have yielded insights into the wavelength sensitivity of circadian input in humans and other mammalian species. The seminal discovery of melanopsin, the photopigment in intrinsically photosensitive retinal ganglion cells, has provided a significant turning point for understanding human circadian phototransduction. Action spectra in humans show that the peak wavelength sensitivity for this newly discovered sensory system is within the blue portion of the spectrum. This is fundamentally different from the three-cone photopic visual system, as well as the individual rod and cone photoreceptor peaks. Studies on rodents, nonhuman primates, and humans indicate that despite having a different wavelength fingerprint, these classic visual photoreceptors still provide an element of input to the circadian system. These findings open the door to innovations in light therapy for circadian and affective disorders, as well as possible architectural light applications.  相似文献   

4.
Human behavior shows large interindividual variation in temporal organization. Extreme "larks" wake up when extreme "owls" fall asleep. These chronotypes are attributed to differences in the circadian clock, and in animals, the genetic basis of similar phenotypic differences is well established. To better understand the genetic basis of temporal organization in humans, the authors developed a questionnaire to document individual sleep times, self-reported light exposure, and self-assessed chronotype, considering work and free days separately. This report summarizes the results of 500 questionnaires completed in a pilot study individual sleep times show large differences between work and free days, except for extreme early types. During the workweek, late chronotypes accumulate considerable sleep debt, for which they compensate on free days by lengthening their sleep by several hours. For all chronotypes, the amount of time spent outdoors in broad daylight significantly affects the timing of sleep: Increased self-reported light exposure advances sleep. The timing of self-selected sleep is multifactorial, including genetic disposition, sleep debt accumulated on workdays, and light exposure. Thus, accurate assessment of genetic chronotypes has to incorporate all of these parameters. The dependence of human chronotype on light, that is, on the amplitude of the light:dark signal, follows the known characteristics of circadian systems in all other experimental organisms. Our results predict that the timing of sleep has changed during industrialization and that a majority of humans are sleep deprived during the workweek. The implications are far ranging concerning learning, memory, vigilance, performance, and quality of life.  相似文献   

5.
6.
Xu K  Zheng X  Sehgal A 《Cell metabolism》2008,8(4):289-300
Studies in mammals have indicated a connection between circadian clocks and feeding behavior, but the nature of the interaction and its relationship to nutrient metabolism are not understood. In Drosophila, clock proteins are expressed in many metabolically important tissues but have not been linked to metabolic processes. Here we demonstrate that Drosophila feeding behavior displays a 24 hr circadian rhythm that is regulated by clocks in digestive/metabolic tissues. Flies lacking clocks in these tissues, in particular in the fat body, also display increased food consumption but have decreased levels of glycogen and a higher sensitivity to starvation. Interestingly, glycogen levels and starvation sensitivity are also affected by clocks in neuronal cells, but the effects of neuronal clocks generally oppose those of the fat body. We propose that the input of neuronal clocks and clocks in metabolic tissues is coordinated to provide effective energy homeostasis.  相似文献   

7.
The negative feedback model for gene regulation of the circadian mechanism is described for the fruitfly, Drosophila melanogaster. The conservation of function of clock molecules is illustrated by comparison with the mammalian circadian system, and the apparent swapping of roles between various canonical clock gene components is highlighted. The role of clock gene duplications and divergence of function is introduced via the timeless gene. The impressive similarities in clock gene regulation between flies and mammals could suggest that variation between more closely related species within insects might be minimal. However, this is not borne out because the expression of clock molecules in the brain of the giant silk moth, Antheraea pernyi, is not easy to reconcile with the negative feedback roles of the period and timeless genes. Variation in clock gene sequences between and within fly species is examined and the role of co-evolution between and within clock molecules is described, particularly with reference to adaptive functions of the circadian phenotype.  相似文献   

8.
Rocks and clocks: calibrating the Tree of Life using fossils and molecules   总被引:8,自引:0,他引:8  
A great tradition in macroevolution and systematics has been the ritual squabbling between palaeontologists and molecular biologists. But, because both sides were talking past each other, they could never agree. Practitioners in both fields should play to their strengths and work together: palaeontologists can provide minimum constraints on branching points in the Tree of Life with considerable precision, and estimate the extent of unrecorded prehistory. Molecular tree analysts have remarkable modelling tools in their armoury to convert multiple minimum age constraints into meaningful dated trees. As we discuss here, work should now focus on establishing reasonable, dated trees that satisfy rigorous assessment of the available fossils and careful consideration of molecular tree methods: rocks and clocks together are an unbeatable combination. Reliably dated trees provide, for the first time, the opportunity to explore wider questions in macroevolution.  相似文献   

9.
10.
11.
12.
13.
Intact mitochondria have been successfully prepared from body tissues from the termites Nasutitermes walkeri and Coptotermes formosanus. This is the first report of the successful isolation of mitochondria from termites (Isoptera: Termitidae). Using an oxygen electrode, oxygen consumption by the mitochondria during the oxidation of various respiratory substrates was determined and their properties measured in terms of respiratory control index and ADP/O. ADP/O was as expected for substrates such as pyruvate, acetylcarnitine and acetyl-CoA and carnitine. Pyruvate and acetate were the major respiratory substrates in both species. The total activity of the pyruvate dehydrogenase complex (PDHc) in the mitochondria from N. walkeri and C. formosanus was determined to be 72.87+/-8.98 and 8.29+/-0.42 nmol/termite/h, respectively. Mitochondria isolated in the presence of inhibitors of PDHc interconversion were used to determine that about 60% of the PDHc was maintained in the active form in both N. walkeri and C. formosanus. The sufficient PDHc activity and high rate of pyruvate oxidation in mitochondria from N. walkeri suggest that pyruvate is rapidly metabolised, whereas the low mitochondrial PDHc activity of C. formosanus suggests that in this species more pyruvate is produced than can be oxidised in the termite tissues.  相似文献   

14.
An important component of metabolic regulation is compartmentation and specialization. Subcellular compartmentation and the role of individual organelles is well studied, though less consideration has been given to the extent to which organelles differ between cells. Organelles extracted from whole tissue homogenates will have generally originated from a range of cell types. This review describes and assesses the regulation of metabolic activity in plants at both the cellular and subcellular level by considering specialization of mitochondria and plastids.  相似文献   

15.
A small cluster of approximately 20,000 neurons in the ventral hypothalamus provide the body with key time-keeping signals and drive circadian rhythms. This circadian clock exhibits surprisingly complex substructures, with inputs from the retina, and outputs to other brain structures. Rather little is known of the neurotransmitters involved, or their regulation.  相似文献   

16.
We report here initial studies on phosphoenolpyruvate metabolism in coupled mitochondria isolated from Jerusalem artichoke tubers. It was found that:
(1)
phosphoenolpyruvate can be metabolized by Jerusalem artichoke mitochondria by virtue of the presence of the mitochondrial pyruvate kinase, shown both immunologically and functionally, located in the inner mitochondrial compartments and distinct from the cytosolic pyruvate kinase as shown by the different pH and inhibition profiles.
(2)
Jerusalem artichoke mitochondria can take up externally added phosphoenolpyruvate in a proton compensated manner, in a carrier-mediated process which was investigated by measuring fluorimetrically the oxidation of intramitochondrial pyridine nucleotide which occurs as a result of phosphoenolpyruvate uptake and alternative oxidase activation.
(3)
The addition of phosphoenolpyruvate causes pyruvate and ATP production, as monitored via HPLC, with their efflux into the extramitochondrial phase investigated fluorimetrically. Such an efflux occurs via the putative phosphoenolpyruvate/pyruvate and phosphoenolpyruvate/ATP antiporters, which differ from each other and from the pyruvate and the adenine nucleotide carriers, in the light of the different sensitivity to non-penetrant compounds. These carriers were shown to regulate the rate of efflux of both pyruvate and ATP. The appearance of citrate and oxaloacetate outside mitochondria was also found as a result of phosphoenolpyruvate addition.
  相似文献   

17.
We report here initial studies on phosphoenolpyruvate metabolism in coupled mitochondria isolated from Jerusalem artichoke tubers. It was found that: (1) phosphoenolpyruvate can be metabolized by Jerusalem artichoke mitochondria by virtue of the presence of the mitochondrial pyruvate kinase, shown both immunologically and functionally, located in the inner mitochondrial compartments and distinct from the cytosolic pyruvate kinase as shown by the different pH and inhibition profiles. (2) Jerusalem artichoke mitochondria can take up externally added phosphoenolpyruvate in a proton compensated manner, in a carrier-mediated process which was investigated by measuring fluorimetrically the oxidation of intramitochondrial pyridine nucleotide which occurs as a result of phosphoenolpyruvate uptake and alternative oxidase activation. (3) The addition of phosphoenolpyruvate causes pyruvate and ATP production, as monitored via HPLC, with their efflux into the extramitochondrial phase investigated fluorimetrically. Such an efflux occurs via the putative phosphoenolpyruvate/pyruvate and phosphoenolpyruvate/ATP antiporters, which differ from each other and from the pyruvate and the adenine nucleotide carriers, in the light of the different sensitivity to non-penetrant compounds. These carriers were shown to regulate the rate of efflux of both pyruvate and ATP. The appearance of citrate and oxaloacetate outside mitochondria was also found as a result of phosphoenolpyruvate addition.  相似文献   

18.
We report the isolation of mitochondria from the endosperm of castor beans (Ricinus communis). These mitochondria oxidized succinate, external NADH, malate and pyruvate with respiratory-control and ADP/O ratios consistent with those found previously with mitochondria from other plant sources. The mitochondria exhibited considerable sensitivity to the electron-transport-chain inhibitors antimycin A and cyanide when oxidizing succinate and external NADH. Pyruvate-dependent O2 uptake was relatively insensitive to these inhibitors, although the residual O2 uptake could be inhibited by salicylhydroxamic acid. We conclude that a cyanide-insensitive alternative terminal oxidase is functional in these mitochondria. However, electrons from the succinate dehydrogenase or external NADH dehydrogenase seem to have no access to this pathway. There is little interconnection between the salicylhydroxamic acid-sensitive and cyanide-sensitive pathways of electron transport. alpha-Cyanocinnamate and its analogues, compound UK5099 [alpha-cyano-beta-(1-phenylindol-3-yl)acrylate] and alpha-cyano-4-hydroxycinnamate, were all found to be potent non-competitive inhibitors of pyruvate oxidation in castor-bean mitochondria. The accumulation of pyruvate by castor-bean mitochondria was determined by using a silicone-oil-centrifugation technique. The accumulation was shown to observe Michaelis-Menten kinetics, with a Km for pyruvate of 0.10 mM and a Vmax. of 0.95 nmol/min per mg of mitochondrial protein. However, the observed rates of pyruvate accumulation were insufficient to account for the pyruvate oxidation rates found in the oxygen-electrode studies. We were able to demonstrate that this is due to the immediate export of the accumulated radiolabel in the form of malate and citrate. Compound UK5099 inhibited the accumulation of [2-14C]pyruvate by castor-bean mitochondria at concentrations similar to those required to inhibit pyruvate oxidation.  相似文献   

19.
We investigated the metabolism of L-lactate in mitochondria isolated from potato tubers grown and saved after harvest in the absence of any chemical agents. Immunologic analysis by western blot using goat polyclonal anti-lactate dehydrogenase showed the existence of a mitochondrial lactate dehydrogenase, the activity of which could be measured photometrically only in mitochondria solubilized with Triton X-100. The addition of L-lactate to potato tuber mitochondria caused: (a) a minor reduction of intramitochondrial pyridine nucleotides, whose measured rate of change increased in the presence of the inhibitor of the alternative oxidase salicyl hydroxamic acid; (b) oxygen consumption not stimulated by ADP, but inhibited by salicyl hydroxamic acid; and (c) activation of the alternative oxidase as polarographically monitored in a manner prevented by oxamate, an L-lactate dehydrogenase inhibitor. Potato tuber mitochondria were shown to swell in isosmotic solutions of ammonium L-lactate in a stereospecific manner, thus showing that L-lactate enters mitochondria by a proton-compensated process. Externally added L-lactate caused the appearance of pyruvate outside mitochondria, thus contributing to the oxidation of extramitochondrial NADH. The rate of pyruvate efflux showed a sigmoidal dependence on L-lactate concentration and was inhibited by phenylsuccinate. Hence, potato tuber mitochondria possess a non-energy-competent L-lactate/pyruvate shuttle. We maintain, therefore, that mitochondrial metabolism of L-lactate plays a previously unsuspected role in the response of potato to hypoxic stress.  相似文献   

20.
Malonate metabolism in rat brain mitochondria   总被引:6,自引:0,他引:6  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号