首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Guanine nucleotide exchange in heterotrimeric G proteins catalyzed by G protein-coupled receptors (GPCRs) is a key event in many physiological processes. The crystal structures of the GPCR rhodopsin and two G proteins as well as binding sites on both catalytically interacting proteins are known, but the temporal sequence of events leading to nucleotide exchange remains to be elucidated. We employed time-resolved near infrared light scattering to study the order in which the Galpha and Ggamma C-terminal binding sites on the holo-G protein interact with the active state of the GPCR rhodopsin (R*) in native membranes. We investigated these key binding sites within mass-tagged peptides and G proteins and found that their binding to R* is mutually exclusive. The interaction of the holo-G protein with R* requires at least one of the lipid modifications of the G protein (i.e. myristoylation of the Galpha N terminus and/or farnesylation of the Ggamma C terminus). A holo-G protein with a high affinity Galpha C terminus shows a specific change of the reaction rate in the GDP release and GTP uptake steps of catalysis. We interpret the data by a sequential fit model where (i) the initial encounter between R* and the G protein occurs with the Gbetagamma subunit, and (ii) the Galpha C-terminal tail then interacts with R* to release bound GDP, thereby decreasing the affinity of R* for the Gbetagamma subunit. The mechanism limits the time in which both C-terminal binding sites of the G protein interact simultaneously with R* to a short lived transitory state.  相似文献   

2.
Processes that occur at membranes are essential for the viability of every cell, but such processes are the least well understood at the molecular level. The complex nature and physical properties of the molecular components involved, as well as the requirement for two separated aqueous compartments, restrict the experimental approaches that can be successfully applied to examine the structure, conformational changes and interactions of the membrane-bound proteins that accomplish these processes. In particular, to accurately elucidate the molecular mechanisms that effect and regulate such processes, one must use experimental approaches that do not disrupt the structural integrity or functionality of the protein-membrane complexes being examined. To best accomplish this goal, especially when large multicomponent complexes and native membranes are involved, the optimal experimental approach to use is most often fluorescence spectroscopy. Using multiple independent fluorescence techniques, one can determine structural information in real time and in intact membranes under native conditions that cannot be obtained by crystallography, electron microscopy and NMR techniques, among others. Furthermore, fluorescence techniques provide a comprehensive range of information, from kinetic to thermodynamic, about the assembly, structure, function and regulation of membrane-bound proteins and complexes. This article describes the use of various fluorescence techniques to characterize different aspects of proteins bound to or embedded in membranes.  相似文献   

3.
Homo- and heterodimerization of the opioid receptors with functional consequences were reported previously. However, the exact nature of these putative dimers has not been identified. In current studies, the nature of the heterodimers was investigated by producing the phenotypes of the 1:1 heterodimers formed between the constitutively expressed mu-opioid receptor (MOR) and the ponasterone A-induced expression of delta-opioid receptor (DOR) in EcR293 cells. By examining the trafficking of the cell surface-located MOR and DOR, we determined that these two receptors endocytosed independently. Using cell surface expression-deficient mutants of MOR and DOR, we observed that the corresponding wild types of these receptors could not rescue the cell surface expression of the mutants, whereas the antagonist naloxone could. Furthermore, studies with constitutive or agonist-induced receptor internalization also indicated that MOR and DOR endocytosed independently and could not "drag in" the corresponding wild types or endocytosis-deficient mutants. Additionally, the heterodimer phenotypes could be eliminated by the pretreatment of the EcR293 cells with pertussis toxin and could be modulated by the deletion of the RRITR sequence in the third intracellular loop that is involved in the receptor-G protein interaction and activation. These data suggest that MOR and DOR heterodimerize only at the cell surface and that the oligomers of opioid receptors and heterotrimeric G protein are the bases for the observed MOR-DOR heterodimer phenotypes.  相似文献   

4.
Lipid protein interactions in cellular membranes   总被引:10,自引:0,他引:10  
  相似文献   

5.
Insulin-receptor interactions in liver cell membranes   总被引:17,自引:0,他引:17  
The specific binding of 125I-insulin to liver cell membranes is a saturable process with respect to insulin. Binding is displaced by low concentrations of native insulin but not by biologically inactive insulin derivatives or by other peptide hormones. The rate constants of association (3.5 × 106 mole−1 sec−1) and of dissociation (2.7 × 10−4 sec−1) of the insulin-membrane complex can be determined independently. The dissociation constant of the complex, determined from the rate constants and from equilibrium data, is about 7 × 10−11M. Complex formation does not result in degradation of the insulin molecule. The binding interaction is a dissociable process involving a homogeneous membrane structure which is almost certainly the biologically significant receptor. The kinetic properties, and the effects of enzymic perturbations of the membrane, suggest that the insulin receptors of liver and of adipose tissue cells may be very similar structures.  相似文献   

6.
Interactions among membrane proteins regulate numerous cellular processes, including cell growth, cell differentiation and apoptosis. We need to understand which proteins interact, where they interact and to which extent they interact. This article describes a set of novel approaches to measure, on the surface of living cells, the number of clusters of proteins, the number of proteins per cluster, the number of clusters or membrane domains that contain pairs of interacting proteins and the fraction of one protein species that interacts with another protein within these domains. These data can then be interpreted in terms of the function of the protein-protein interactions.  相似文献   

7.
8.
9.
10.
Phlorizin--receptor interactions in fat cell plasma membranes   总被引:1,自引:0,他引:1  
  相似文献   

11.
The rate but not the extent of phlorizin binding to purified fat cell plasma membranes was temperature dependent and this binding was a saturable process. A Scatchard plot revealed a population of sites which exhibited a dissociation constant of about 0.35 mM and a maximum binding capacity of about 8 nmoles/mg membrane protein. Under the conditions of these experiments neither glucose, phloretin, nor cytochalasin B inhibited [3H]phlorizin binding. These data demonstrate the presence in fat cell plasma membrane of specific receptors for phlorizin which may mediate the inhibitory effects of this agent on hexose trasport.  相似文献   

12.
Signal transfer between the protease-activated PAR1 thrombin receptor and membrane-associated heterotrimeric G proteins is mediated by protein-protein interactions. We constructed a yeast signaling system that resolves domain-specific functions of binding from coupling in the Galpha subunit. The endogenous yeast Galpha subunit, Gpa1, does not bind to PAR1 and served as a null structural template. N- and C-terminal portions of mammalian G(i2) and G(16) were substituted back into the Gpa1 template and gain-of-function assessed. The C-terminal third of G(16), but not of G(i2), provides sufficient interactions for coupling to occur with PAR1. The N-terminal two-thirds of G(i2) also contains sufficient determinants to bind and couple to PAR1 and overcome the otherwise negative or missing interactions supplied by the C-terminal third of Gpa1. Replacement of the N-terminal alpha-helix of G(i2), residues 1-34, with those of Gpa1 abolishes coupling but not binding to PAR1 or to betagamma subunits. These data support a model that the N-terminal alphaN helix of the Galpha subunit is physically interposed between PAR1 and the Gbeta subunit and directly assists in transferring the signal between agonist-activated receptor and G protein.  相似文献   

13.
Advances in high-throughput characterization of protein networks in vivo have resulted in large databases of unexplored protein interactions that occur during normal cell function. Their further characterization requires quantitative experimental strategies that are easy to implement in laboratories without specialized equipment. We have overcome many of the previous limitations to thermodynamic quantification of protein interactions, by developing a series of in-solution fluorescence-based strategies. These methods have high sensitivity, a broad dynamic range, and can be performed in a high-throughput manner. In three case studies we demonstrate how fluorescence (de)quenching and fluorescence resonance energy transfer can be used to quantitatively probe various high-affinity protein-DNA and protein-protein interactions. We applied these methods to describe the preference of linker histone H1 for nucleosomes over DNA, the ionic dependence of the DNA repair enzyme PARP1 in DNA binding, and the interaction between the histone chaperone Nap1 and the histone H2A-H2B heterodimer.  相似文献   

14.
15.
BACKGROUND: Fluorescence resonance energy transfer (FRET) is a powerful technique for measuring molecular interactions at Angstrom distances. We present a new method for FRET that utilizes the unique spectral properties of variants of the green fluorescent protein (GFP) for large-scale analysis by flow cytometry. METHODS: The proteins of interest are fused in frame separately to the cyan fluorescent protein (CFP) or the yellow fluorescent protein (YFP). FRET between these differentially tagged fusion proteins is analyzed using a dual-laser FACSVantage cytometer. RESULTS: We show that homotypic interactions between individual receptor chains of tumor necrosis factor receptor (TNFR) family members can be detected as FRET from CFP-tagged receptor chains to YFP-tagged receptor chains. Noncovalent molecular complexation can be detected as FRET between fusions of CFP and YFP to either the intracellular or extracellular regions of the receptor chains. The specificity of the assay is demonstrated by the absence of FRET between heterologous receptor pairs that do not biochemically associate with each other. Interaction between a TNFR-like receptor (Fas/CD95/Apo-1) and a downstream cytoplasmic signaling component (FADD) can also be demonstrated by flow cytometric FRET analysis. CONCLUSIONS: The utility of spectral variants of GFP in flow cytometric FRET analysis of membrane receptors is demonstrated. This method of analyzing FRET allows probing of noncovalent molecular interactions that involve both the intracellular and extracellular regions of membrane proteins as well as proteins within the cells. Unlike biochemical methods, FRET allows the quantitative determination of noncovalent molecular associations at Angstrom level in living cells. Moreover, flow cytometry allows quantitative analyses to be carried out on a cell-by-cell basis on large number of cells. Published 2001 Wiley-Liss, Inc.  相似文献   

16.
Fluorescence correlation spectroscopy (FCS) was applied to examine the interactions between a protein and a membrane lipid. The protein 4.1-phosphatidyl serine (PS) interactions served as the model system to demonstrate the membrane lipid-protein interactions. This protein was labeled with rhodamine and its interactions with PS-liposomes were measured by FCS. The present results clearly demonstrated that a small protein molecule, protein 4.1, interacts specifically with a large particle, a PS-liposome. This interaction appears to be hydrophobic and not electrostatic, since the bound protein 4.1 did not dissociate in solution and was specifically released from PS-liposomes by treatment with phospholipase A(2) (PLA(2)). In the present study, using FCS we could demonstrate that the serine residue of PS is required for protein 4.1 to bind to PS-liposomes and that the bound protein 4.1 is closely associated with the fatty acid of the PS molecule in the liposomes.  相似文献   

17.
The selectivity of D2 dopamine receptor-guanine nucleotide-binding protein (G protein) coupling was studied by reconstitution techniques utilizing purified D2 dopamine receptors from bovine anterior pituitary and resolved G proteins from bovine brain, bovine pituitary, and human erythrocyte. Titration of a fixed receptor concentration with varying G protein concentrations revealed two aspects of receptor-G protein coupling. First, Gi2 appeared to couple selectively with the D2 receptor with approximately 10-fold higher affinity than any other tested Gi subtype. Second, the G proteins differed in the maximal receptor-mediated agonist stimulation of the intrinsic GTPase activity. Gi2 appeared to be maximally stimulated by agonist-receptor complex with turnover numbers of approximately 2 min-1. The other Gi subtypes, Gi1 and Gi3, could be only partially activated, resulting in maximal rates of GTPase of approximately 1 min-1. Agonist-stimulated GTPase activity was not detected in preparations containing Go from bovine brain. The differences in maximal agonist-stimulated GTPase rates observed among the Gi subtypes could be explained by differences in agonist-promoted guanyl nucleotide exchange. Both guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) binding and GDP release parameters were enhanced 2-fold for the Gi2 subtype over the other Gi subtypes. These results suggest that even though several types of pertussis toxin substrate may exist in most tissues, a receptor may interact discretely with G proteins, thereby dictating signal transduction mechanisms.  相似文献   

18.
Human gallbladders with cholesterol stones (ChS) exhibit an impaired muscle contraction and relaxation and a lower CCK receptor-binding capacity compared with those with pigment stones (PS). This study was designed to determine whether there is an abnormal receptor-G protein coupling in human gallbladders with ChS using (35)S-labeled guanosine 5'-O-(3-thiotriphosphate) ([(35)S]GTPgammaS) binding, (125)I-labeled CCK-8 autoradiography, immunoblotting, and G protein quantitation. CCK and vasoactive intestinal peptide caused significant increases in [(35)S]GTPgammaS binding to Galpha(i-3) and G(s)alpha, respectively. The binding was lower in ChS than in PS (P < 0.01). The reduced [(35)S]GTPgammaS binding in ChS was normalized after the muscles were treated with cholesterol-free liposomes (P < 0.01). Autoradiography and immunoblots showed a decreased optical density (OD) for CCK receptors, an even lower OD value for receptor-G protein coupling, and a higher OD for uncoupled receptors or Galpha(i-3) protein in ChS compared with PS (P < 0.001). G protein quantitation also showed that there were no significant differences in the Galpha(i-3) and G(s)alpha content in ChS and PS. We conclude that, in addition to an impaired CCK receptor-binding capacity, there is a defect in receptor-G protein coupling in muscle cells from gallbladder with ChS. These changes may be normalized after removal of excess cholesterol from the plasma membrane.  相似文献   

19.
20.
Recent technological advances in NMR spectroscopy have alleviated the size limitations for the determination of biomolecular structures in solution. At the same time, novel NMR parameters such as residual dipolar couplings are providing greater accuracy. As this review shows, the structures of protein-protein and protein-nucleic acid complexes up to 50 kDa can now be accurately determined. Although de novo structure determination still requires considerable effort, information on interaction surfaces from chemical shift perturbations is much easier to obtain. Advances in modelling and data-driven docking procedures allow this information to be used for determining approximate structures of biomolecular complexes. As a result, a wealth of information has become available on the way in which proteins interact with other biomolecules. Of particular interest is the fact that these NMR-based methods can be applied to weak and transient protein-protein complexes that are difficult to study by other structural methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号