首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 798 毫秒
1.
ObjectiveHypertension induces end-organ damage through inflammation, and autophagy plays a crucial role in the regulation of cellular homeostasis. In the present study, we aimed to define the role of autophagy in the development of inflammation and cardiac injury induced by angiotensin II (Ang II).Methods and ResultsAutophagy protein 5 (Atg5) haplodeficiency (Atg5+/−) and age-matched wild-type (WT) C57BL/6 J mice were infused with Ang II (1500 ng/kg/min) or saline for 7 days. Heart sections were stained with hematoxylin and eosin (H&E), Masson's trichrome, and immunohistochemical stains. Cytokine and LC3 levels were measured using real-time PCR or western blot analysis. After Ang II infusion, the WT mice exhibited marked macrophage accumulation, cytokine expression, and reactive oxygen species (ROS) production compared with saline-infused controls. However, these effects induced by Ang II infusion were aggravated in Atg5+/− mice. These effects were associated with Atg5-mediated impaired autophagy, accompanied by increased production of ROS and activation of nuclear factor-κB (NF-κB) in macrophages. Finally, increased cardiac inflammation in Atg5 haplodeficient mice was associated with increased cardiac fibrosis.ConclusionAtg5 deficiency-mediated autophagy increases ROS production and NF-κB activity in macrophages, thereby contributing to cardiac inflammation and injury. Thus, improving autophagy may be a novel therapeutic strategy to ameliorate hypertension-induced inflammation and organ damage.  相似文献   

2.
Taste buds and the peripheral nerves innervating them are two important components of the peripheral gustatory system. They require appropriate connections for the taste system to function. Neurotrophic factors play crucial roles in the innervation of peripheral sensory organs and tissues. Both brain-derived neurotrophic factor (BDNF) null-mutated and neurotrophin-4 (NT-4) null-mutated mice exhibit peripheral gustatory deficits. BDNF and NT-4 bind to a common high affinity tyrosine kinase receptor, TrkB (NTRK-2), and a common p75 neurotrophin receptor (NGFR). We are currently using a transgenic mouse model to study peripheral taste system development and innervation in the absence of both TrkB ligands. We show that taste cell progenitors express taste cell markers during early stages of taste bud development in both BDNF−/−xNT-4−/− and wild-type mice. At early embryonic stages, taste bud progenitors express Troma-1, Shh, and Sox2 in all mice. At later stages, lack of innervation becomes a prominent feature in BDNF−/−xNT-4−/− mice leading to a decreasing number of fungiform papillae and morphologically degenerating taste cells. A total loss of vallate taste cells also occurs in postnatal transgenic mice. Our data indicate an initial independence but a later permissive and essential role for innervation in taste bud development and maintenance. This work was supported by NIH-NIDCD R01-RDC007628.  相似文献   

3.
Yang XH  Wang YH  Wang JJ  Liu YC  Deng W  Qin C  Gao JL  Zhang LY 《Peptides》2012,36(1):60-70
In this study, the relationship between the local imbalance of angiotensin converting enzymes ACE and ACE2 as well as Ang II and Ang (1-7) and renal injury was observed in the different genotypes mice subjected to tourniquet-induced ischemia-reperfusion on hind limbs. In wild-type mice, renal ACE expression increased while renal ACE2 expression decreased significantly after reperfusion, accompanied by elevated serum angiotensin II (Ang II) level and lowered serum angiotensin (1-7) (Ang (1-7)) level. However, renal Ang (1-7) also increased markedly while renal Ang II was elevated. Renal injury became evident after limb reperfusion, with increased malondialdehyde (MDA), decreased super-oxide dismutase (SOD) activity and increased serum blood urea nitrogen (BUN) and creatinine (Cr), compared to control mice. These mice also developed severe renal pathology including infiltration of inflammatory cells in the renal interstitium and degeneration of tubule epithelial cells. In ACE2 knock-out mice with ACE up-regulation, tourniquet-induced renal injury was significantly aggravated as shown by increased levels of MDA, BUN and Cr, decreased SOD activity, more severe renal pathology, and decreased survival rate, compared with tourniquet-treated wild-type mice. Conversely, ACE2 transgenic mice with normal ACE expression were more resistant to tourniquet challenge as evidenced by decreased levels of MDA, BUN and Cr, increased SOD activity, attenuated renal pathological changes and increased survival rate. Our results suggest that the deregulation of ACE and ACE2 plays an important role in tourniquet-induced renal injury and that ACE2 up-regulation to restore the proper ACE/ACE2 balance is a potential therapeutic strategy for kidney injury.  相似文献   

4.
The contributions of circulating angiotensin II (Ang II) and catecholamines to cardiovascular control in the spiny dogfish were investigated by monitoring the effects of exogenous and endogenous dogfish [Asn1, Pro3, Ile5]-Ang II (dfAng II) on plasma catecholamine levels and blood pressure regulation. Bolus intravenous injections of dfAng II (30–1200 pmol kg−1) elicited dose-dependent increases in plasma adrenaline and noradrenaline concentrations, caudal artery pressure (P CA), and systemic vascular resistance (R S), and a decrease in cardiac output (Q). Similar injections of Ang II in dogfish pre-treated with the α-adrenoceptor antagonist yohimbine (4 mg kg−1) also elicited dose-dependent increases in plasma catecholamine levels yet the cardiovascular effects were abolished. Dogfish treated with yohimbine were hypotensive and had elevated levels of plasma Ang II and catecholamines. Intravenous injection of the smooth muscle relaxant papaverine (10 mg kg−1) elicited a transient decrease in P CA and R S, and increases in plasma Ang II and catecholamine levels. In dogfish first treated with lisinopril (10−4 mol kg−1), an angiotensin converting enzyme inhibitor, papaverine treatment caused a more prolonged and greater decrease in P CA and R S, an attenuated increase in plasma catecholamines, and no change in plasma Ang II. By itself, lisinopril treatment had little effect on P CA, and no effect on R S, plasma Ang II or catecholamines. In yohimbine-treated dogfish, papaverine treatment elicited marked decreases in P CA, R S, and Q, and increases in plasma Ang II and catecholamines. Among the three papaverine treatments, there was a positive linear relationship between plasma Ang II and catecholamine concentrations, and the cardiovascular and hormonal changes were most pronounced in the yohimbine + papaverine treatment. Therefore, under resting normotensive conditions, while Ang II does not appear to be involved in cardiovascular control, catecholamines play an important role. However, during a hypotensive stress elicited by vascular smooth muscle relaxation, Ang II indirectly contributes to cardiovascular control by dose-dependently stimulating catecholamine release. Accepted: 24 February 1999  相似文献   

5.
Smad7 has been shown to negatively regulate fibrosis and inflammation, but its role in angiotensin II (Ang II)-induced hypertensive cardiac remodeling remains unknown. Therefore, the present study investigated the role of Smad7 in hypertensive cardiopathy induced by angiotensin II infusion. Hypertensive cardiac disease was induced in Smad7 gene knockout (KO) and wild-type (WT) mice by subcutaneous infusion of Ang II (1.46 mg/kg/day) for 28 days. Although equal levels of high blood pressure were developed in both Smad7 KO and WT mice, Smad7 KO mice developed more severe cardiac injury as demonstrated by impairing cardiac function including a significant increase in left ventricular (LV) mass (P<0.01),reduction of LV ejection fraction(P<0.001) and fractional shortening(P<0.001). Real-time PCR, Western blot and immunohistochemistry detected that deletion of Smad7 significantly enhanced Ang II-induced cardiac fibrosis and inflammation, including upregulation of collagen I, α-SMA, interleukin-1β, TNF-α, and infiltration of CD3+ T cells and F4/80+ macrophages. Further studies revealed that enhanced activation of the Sp1-TGFβ/Smad3-NF-κB pathways and downregulation of miR-29 were mechanisms though which deletion of Smad7 promoted Ang II-mediated cardiac remodeling. In conclusions, Smad7 plays a protective role in AngII-mediated cardiac remodeling via mechanisms involving the Sp1-TGF-β/Smad3-NF.κB-miR-29 regulatory network.  相似文献   

6.
Fluid and electrolyte secretion from secretory epithelia is a highly regulated process. Chloride channel activity at the apical membrane determines the rate and direction of salt and water secretion. Multiple classes of Cl channels with distinct gating mechanisms are involved in moving ions and water. Secretory agonists that induce intracellular increases in two second messenger systems, cAMP and [Ca2+] i , are generally associated with secretion. However, changes in cell volume and the membrane potential may also play a role in regulating fluid and electrolyte secretion in some tissues. In this review we discuss the regulation of the different types of Cl channels found in secretory epithelia. Received: 16 September 1997/Revised: 13 November 1997  相似文献   

7.
Nitric oxide (NO) is mainly generated by endothelial NO synthase (eNOS) or neuronal NOS (nNOS). Recent studies indicate that angiotensin II generates NO release, which modulates renal vascular resistance and sympathetic neurotransmission. Experiments in wild-type [eNOS(+/+) and nNOS(+/+)], eNOS-deficient [eNOS(-/-)], and nNOS-deficient [nNOS(-/-)] mice were performed to determine which NOS isoform is involved. Isolated mice kidneys were perfused with Krebs-Henseleit solution. Endogenous norepinephrine release was measured by HPLC. Angiotensin II dose dependently increased renal vascular resistance in all mice species. EC(50) and maximal pressor responses to angiotensin II were greater in eNOS(-/-) than in nNOS(-/-) and smaller in wild-type mice. The nonselective NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME; 0.3 mM) enhanced angiotensin II-induced pressor responses in nNOS(-/-) and wild-type mice but not in eNOS(-/-) mice. In nNOS(+/+) mice, 7-nitroindazole monosodium salt (7-NINA; 0.3 mM), a selective nNOS inhibitor, enhanced angiotensin II-induced pressor responses slightly. Angiotensin II-enhanced renal nerve stimulation induced norepinephrine release in all species. L-NAME (0.3 mM) reduced angiotensin II-mediated facilitation of norepinephrine release in nNOS(-/-) and wild-type mice but not in eNOS(-/-) mice. 7-NINA failed to modulate norepinephrine release in nNOS(+/+) mice. (4-Chlorophrnylthio)guanosine-3', 5'-cyclic monophosphate (0.1 nM) increased norepinephrine release. mRNA expression of eNOS, nNOS, and inducible NOS did not differ between mice strains. In conclusion, angiotensin II-mediated effects on renal vascular resistance and sympathetic neurotransmission are modulated by NO in mice. These effects are mediated by eNOS and nNOS, but NO derived from eNOS dominates. Only NO derived from eNOS seems to modulate angiotensin II-mediated renal norepinephrine release.  相似文献   

8.
Angiotensin II (Ang II) plays a pivotal role in promoting podocyte dysfunction and albuminuria, however, the underlying mechanisms have not been fully delineated. In this study, we found that Ang II induced Wnt1 expression and β-catenin nuclear translocation in cultured mouse podocytes. Blocking Wnt signaling with Dickkopf-1 (Dkk1) or β-catenin siRNA attenuated Ang II-induced podocyte injury. Ang II could also induce the phosphorylation of calmodulin-dependent protein kinase (CaMK) II and cAMP response element-binding protein (CREB) in cultured podocytes. Blockade of this pathway with CK59 or CREB siRNA could significantly inhibit Ang II-induced Wnt/β-catenin signaling and podocyte injury. In in vivo studies, administration of Ang II promoted Wnt/β-catenin signaling, aggregated podocyte damage, and albuminuria in mice. CK59 could remarkably ameliorate Ang II-induced podocyte injury and albuminuria. Furthermore, ectopic expression of exogenous Dkk1 also attenuated Ang II-induced podocytopathy in mice. Taken together, this study demonstrates that the CaMK II/CREB/Wnt/β-catenin signaling cascade plays an important role in regulating Ang II-induced podocytopathy. Targeting this signaling pathway may offer renal protection against the development of proteinuric kidney diseases.  相似文献   

9.
Apoptosis of cardiomyocytes plays an important role in the development of cardiovascular diseases (CVD). Numerous studies have shown that generation of reactive oxygen species (ROS) induced by the renin-angiotensin system (RAS) is involved in this pathological process. Recent studies also suggested that acetylcholine (ACh) prevented the hypoxia-induced apoptosis of mouse ES cells by inhibiting the ROS production. However, whether ACh can inhibit the action of angiotensin II (Ang II) and subsequently prevent CVD development remains unclear. In this study, H9c2 cells were stimulated by 10−6 M Ang II for 24 h with or without 10−5 M ACh, 10−5 M ACh + 10−4 M atropine respectively. The results demonstrated that Ang II increased apoptosis index by fourfold (vs. the control group, P < 0.01), which were significantly diminished by ACh. However, the atropine (ACh receptor [AChR] inhibitor) treatment blocked the protective effect of ACh. Subsequently, Ang II significantly increases the expression and activity of NADPH oxidase so that ROS production is increased by sevenfold (vs. control group, P < 0.01). The activity and expression of caspase-3 along with the Bax/Bcl2 ratio and the levels of p38 mitogen activated protein kinase (MAPK) phosphorylation also appeared to follow a similar trend. Furthermore, we observed that ACh could reduce up-regulation of AT1 receptor expression induced by Ang II. However, all these effects of ACh were inhibited by atropine. In conclusion, ACh prevents Ang II-induced H9c2 cells apoptosis through down-regulation of the AT1 receptor and inhibition of ROS-mediated p38 MAPK activation as well as regulation of Bcl-2, Bax and caspase-3.  相似文献   

10.
Angiotensin II (Ang II) is an important regulator of cardiovascular function in adult vertebrates. Although its role in regulating the adult system has been extensively investigated, the cardiovascular response to Ang II in embryonic vertebrates is relatively unknown. We investigated the potential of Ang II as a regulator of cardiovascular function in embryonic chickens, which lack central nervous system control of cardiovascular function throughout the majority of incubation. The cardiovascular response to Ang II in embryonic chickens was investigated over the final 50% of their development. Ang II produced a dose-dependent increase in arterial pressure on each day of development studied, and the response increased in intensity as development progressed. The Ang II type-1 receptor nonspecific competitive peptide antagonist [Sar1 ile8] Ang II blocked the cardiovascular response to subsequent injections of Ang II on day 21 only. The embryonic pressure response to Ang II (hypertension only) differed from that of adult chickens, in which initial hypotension is followed by hypertension. The constant level of gene expression for the Ang II receptor, in conjunction with an increasing pressure response to the peptide, suggests that two Ang II receptor subtypes are present during chicken development. Collectively, the data indicate that Ang II plays an important role in the cardiovascular development of chickens; however, its role in maintaining basal function requires further study.  相似文献   

11.
Macroscopic and unitary currents through stretch-activated Cl channels were examined in isolated human atrial myocytes using whole-cell, excised outside-out and inside-out configurations of the patch-clamp technique. When K+ and Ca2+ conductances were blocked and the intracellular Ca2+ concentration ([Ca2+] i ) was reduced, application of positive pressure via the pipette activated membrane currents under whole-cell voltage-clamp conditions. The reversal potential of the current shifted by 60 mV per 10-fold change in the external Cl concentration, indicating that the current was Cl selective. The current was inhibited by bath application of 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS) and 9-anthracenecarboxylic acid (9-AC). β-Adrenergic stimulation failed to activate a Cl current. In single channel recordings from outside-out patches, positive pressure in the pipette activated the unitary current with half-maximal activation of 14.7 mm Hg at +40 mV. The current-voltage relationship of single channel activity obtained in inside-out patches was linear in symmetrical Cl solution with the averaged slope conductance of 8.6 ± 0.7 pS (mean ±sd, n= 10). The reversal potential shift of the channel by changing Cl concentration was consistent with a Cl selective channel. The open time distribution was best described by a single exponential function with mean open lifetime of 80.4 ± 9.6 msec (n= 9), while at least two exponentials were required to fit the closed time distributions with a time constant for the fast component of 11.5 ± 2.2 msec (n= 9) and that for the slow component of 170.2 ± 21.8 msec (n= 9). Major changes in the single channel activity in response to pressure were caused by changes in the interburst interval. Single channel activity was inhibited by DIDS and 9-AC in a manner similar to whole-cell configuration. These results suggest that membrane stretch induced by applying pressure via the pipette activated a Cl current in human atrial myocytes. The current was sensitive to Cl channel blockers and exhibited membrane voltage-independent bursting opening without sensitive to β-adrenergic stimulation. Received: 21 October 1996/Revised: 17 December 1997  相似文献   

12.
Plasma and urine of toadfish (Opsanus tau) in sea water and 10% sea water were analyzed to assess responses of an aglomerular fish to hypoosmotic challenge. Following transfer to 10% sea water, plasma osmotic pressure decreased slowly from 318 to 241 mmol · kg H2O−1, over a period of 10–15 days. Urine osmotic pressure decreased in parallel from 299 to 207 mmol · kg H2O−1, leaving urine/plasma ratios of osmotic pressure essentially unchanged. In contrast, the volume and composition of urine changed rapidly following transfer to 10% sea water. Urine flow rate increased 110% from 3.0 to 6.3 μl · 100g−1 · h−1 and Na+ excretion increased 346%, while excretion of Mg2− and SO4 2− decreased 81% and 90%, respectively. Excretion rates for Cl were low in seawater toadfish and decreased further in 10% sea water. An unknown sulfur-containing anion, present in the urine of seawater toadfish, contributed significantly to the composition and ionic balance in urine of toadfish in 10% sea water. These results suggest that the inability to produce strongly dilute urine obliges toadfish to lose salt in order to excrete water, in hypoosmotic media. The decrease in plasma osmotic pressure may be both a strategy to reduce osmotic and ionic gradients in dilute media and a consequence of the kidney's inability to excrete water without salt. Accepted: 22 August 1996  相似文献   

13.
Little is known about the vascular actions of angiotensin II (Ang II) and nitric oxide (NO) in Amphibia. This study investigated (1) Ang II contractility, (2) NO concentrations, and (3) correlations between Ang II contractility, NO concentration and mean arterial pressure (MAP) in isolated Bufo arenarum toad aortic rings. Contractility was measured in isometric conditions, NO concentrations were determined by the Griess reaction, and MAP was determined by a direct method. In isolated toad aortic rings, Ang II produced a contractile response (292.7 ± 89.2 mg; n = 20). Furthermore, a contractile response to norepinephrine (NE) was also obtained. A significant correlation between both the Ang II and NE contractile responses was found (r = 0.89; n = 11; P < 0.01). Administration of Ang II increased MAP values (Basal 16.8 ± 1.7; n = 19 vs. Ang II 28.4 ± 1.8 mmHg; n = 19; P < 0.001), and the increase of MAP by Ang II was positively correlated with the Ang II contractile response (P < 0.01). Administration of L-NAME also increased MAP values, and this effect was higher in those toads that presented a lower pressure response to Ang II (Pearson r = −0.68; P < 0.05). NO was present in all aortic rings, and its concentrations were negatively related to the Ang II contractile response (P < 0.036) and pressure response (Pearson r = −7.08; P < 0.001). These findings suggest that, in the B. arenarum toad, the NO system contra-regulates both the contractile and pressure Ang II responses, although its action could be different in each specimen.  相似文献   

14.
Angiotensin II (Ang II) promotes vascular disease through several mechanisms including by producing oxidative stress and endothelial dysfunction. Although multiple potential sources of reactive oxygen species exist, the relative importance of each is unclear, particularly in individual vascular beds. In these experiments, we examined the role of NADPH oxidase (Nox1 and Nox2) in Ang II-induced endothelial dysfunction in the cerebral circulation. Treatment with Ang II (1.4 mg·kg(-1)·day(-1) for 7 days), but not vehicle, increased blood pressure in all groups. In wild-type (WT; C57Bl/6) mice, Ang II reduced dilation of the basilar artery to the endothelium-dependent agonist acetylcholine compared with vehicle but had no effect on responses in Nox2-deficient (Nox2(-/y)) mice. Ang II impaired responses to acetylcholine in Nox1 WT (Nox1(+/y)) and caused a small reduction in responses to acetylcholine in Nox1-deficient (Nox1(-/y)) mice. Ang II did not impair responses to the endothelium-independent agonists nitroprusside or papaverine in either group. In WT mice, Ang II increased basal and phorbol-dibutyrate-stimulated superoxide production in the cerebrovasculature, and these increases were abolished in Nox2(-/y) mice. Overall, these data suggest that Nox2 plays a relatively prominent role in mediating Ang II-induced oxidative stress and cerebral endothelial dysfunction, with a minor role for Nox1.  相似文献   

15.
A mathematical model of the HCO 3-secreting pancreatic ductal epithelium was developed using network thermodynamics. With a minimal set of assumptions, the model accurately reproduced the experimentally measured membrane potentials, voltage divider ratio, transepithelial resistance and short-circuit current of nonstimulated ducts that were microperfused and bathed with a CO2/HCO 3-free, HEPES-buffered solution, and also the intracellular pH of duct cells bathed in a CO2/HCO 3-buffered solution. The model also accurately simulated: (i) the effect of step changes in basolateral K+ concentration, and the effect of K+ channel blockers on basolateral membrane potential; (ii) the intracellular acidification caused by a Na+-free extracellular solution and the effect of amiloride on this acidification; and (iii) the intracellular alkalinization caused by a Cl-free extracellular solution and the effect of DIDS on this alkalinization. In addition, the model predicted that the luminal Cl conductance plays a key role in controlling both the HCO 3 secretory rate and intracellular pH during HCO 3 secretion. We believe that the model will be helpful in the analysis of experimental data and improve our understanding of HCO 3-transporting mechanisms in pancreatic duct cells. Received: 18 October 1995/Revised: 5 July 1996  相似文献   

16.
Here we show that low-dose cyclophosphamide (CY), that depends for its therapeutic effectiveness on the immunopotentiating activity of the drug for T cell-mediated tumor-eradicating immunity, is curative for ~80% of wild-type (WT) mice bearing a large s.c. MOPC-315 tumor, but only for ~10% of IFN-α/βR−/− mice bearing a large s.c. MOPC-315 tumor. Histopathological examination of the s.c. tumors of such mice on day 4 after the chemotherapy revealed that the low dose of CY led to accumulation of T lymphocytes in both the WT and the IFN-α/βR−/− mice. However, in the CY treated tumor bearing WT mice the T lymphocytes were present throughout the tumor mass and in direct contact with tumor cells, but in the CY treated tumor bearing IFN-α/βR−/− mice most of the T lymphocytes remained in blood vessels. In addition to being important for CY-induced transendothelial migration of T lymphocytes into the tumor mass, we show here that signaling via the IFN-α/βR is also important for CY-induced control of metastatic tumor progression in the spleen and liver of the tumor bearing mice. Finally, CY cured tumor bearing WT mice were resistant to a subsequent challenge with MOPC-315 tumor cells, but the few CY cured tumor bearing IFN-α/βR−/− mice were not. Thus, signaling via the IFN-α/βR on host cells in MOPC-315 tumor bearers is important for CY-induced: (a) transendothelial migration of T lymphocytes into the tumor mass and the eradication of the primary tumor, (b) control of metastatic tumor progression, and (c) resistance to a subsequent tumor challenge. This work was supported by Research Grant 03-19 from the American Cancer Society-Illinois Division.  相似文献   

17.
 We studied the control of salt gland secretion in hatchling Chelonia mydas. The threshold salt load to activate salt secretion was between 400 μmol NaCl 100 g bodymass (BM)−1 and 600 μmol NaCl 100 g BM−1, which caused an increase in plasma sodium concentration of 13% to 19%. Following a salt load of 2700 μmol NaCl 100 g BM−1, salt gland secretion commenced in 12 ± 1.3 min and reached maximal secretory concentration within 2–7 min. Maximal secretory rate of a single gland averaged 415 μmol Na 100 g BM−1 h−1. Plasma sodium concentration and total osmotic concentration after salt loading were significantly higher than pretreatment values within 2 min. Adrenalin (25 μg kg BM−1) and the cholinergic agonist methacholine (1 mg kg BM−1) inhibited salt gland activity. Atropine (10 mg kg BM−1) reversed methacholine inhibition and stimulated salt gland secretion when administered with a subthreshold salt load. Arginine vasotocin produced a transient reduction in sodium secretion by the active gland, while atrial natriuretic factor, vasoactive intestinal peptide and neuropeptide Y had no measurable effect on any aspect of salt gland secretion. Our results demonstrated that secretion of the salt gland in C. mydas can be modified by neural and hormonal chemicals in vivo and that the cholinergic and adrenergic stimulation of an exocrine gland do not appear to have the typical, antagonist actions on the chelonian salt gland. Accepted: 28 September 1999  相似文献   

18.
Experiments in wild-type (WT; C57BL/6J) mice, endothelial nitric oxide synthase null mutant [eNOS(-/-)] mice, and neuronal NOS null mutant [nNOS(-/-)] mice were performed to determine which NOS isoform regulates renal cortical and medullary blood flow under basal conditions and during the infusion of ANG II. Inhibition of NOS with N(omega)-nitro-l-arginine methyl ester (l-NAME; 50 mg/kg iv) in Inactin-anesthetized WT and nNOS(-/-) mice increased arterial blood pressure by 28-31 mmHg and significantly decreased blood flow in the renal cortex (18-24%) and the renal medulla (13-18%). In contrast, blood pressure and renal cortical and medullary blood flow were unaltered after l-NAME administration to eNOS(-/-) mice, indicating that NO derived from eNOS regulates baseline vascular resistance in mice. In subsequent experiments, intravenous ANG II (20 ng x kg(-1) x min(-1)) significantly decreased renal cortical blood flow (by 15-25%) in WT, eNOS(-/-), nNOS(-/-), and WT mice treated with l-NAME. The infusion of ANG II, however, led to a significant increase in medullary blood flow (12-15%) in WT and eNOS(-/-) mice. The increase in medullary blood flow following ANG II infusion was not observed in nNOS(-/-) mice, in WT or eNOS(-/-) mice pretreated with l-NAME, or in WT mice administered the nNOS inhibitor 5-(1-imino-3-butenyl)-l-ornithine (1 mg x kg(-1) x h(-1)). These data demonstrate that NO from eNOS regulates baseline blood flow in the mouse renal cortex and medulla, while NO produced by nNOS mediates an increase in medullary blood flow in response to ANG II.  相似文献   

19.
《Autophagy》2013,9(6):657-659
Mast cells play a crucial role in allergic inflammatory reactions through releasing cytosolic granules upon antigen stimulation. However, the mechanisms underlying maturation and release of secretory granules are not fully understood. We found that autophagy is constitutively induced in mast cells under full nutrition conditions, and type II LC3 (LC3-II), a marker for autophagosomes, localizes on secretory granules. While deletion of Atg7 does not impair the development of bone marrow-derived mast cells (BMMCs), Atg7-deficient BMMCs show severe impairment of degranulation, but not cytokine production, upon antigen stimulation. Moreover we found that LC3-II, but not LC3-I, colocalizes with CD63, a marker for secretory lysosomes and is released extracellularly along with degranulation in wild-type BMMCs, but not Atg7-deficient BMMCs. Finally, passive cutaneous anaphylaxis reactions are almost completely abolished in mast celldeficient mice reconstituted with Atg7-deficient BMMCs. Collectively, these results suggest that autophagy is not essential for the development, but plays a crucial role in degranulation, of mast cells.  相似文献   

20.
The possible correlation between P-glycoprotein (PGP) and volume-sensitive Cl channel was examined in a pair of cell lines: a subline of the human epidermoid KB cell (KB-3-1) and the corresponding MDR1-transfected cell line (KB-G2). Western blot analysis and indirect immunofluorescence studies indicated that KB-G2, but not KB-3-1, exhibits the PGP expression. Patch-clamp whole-cell recordings showed that osmotic swelling activates Cl currents not only in PGP-expressing but also in PGP-lacking cells. The amplitude of the maximal current was indistinguishable between both cells. Activation of protein kinase C (PKC) or loading with a PKC inhibitor failed to affect the swelling-induced activation of the Cl currents in both cells. The relation between whole-cell Cl currents and cell size measured simultaneously showed that volume sensitivity of the Cl channel was augmented by the PGP expression irrespective of the activity of PKC on the plasma membrane. A similar increase in volume sensitivity of the Cl channel was also induced by the expression of the ATP hydrolysis-deficient PGP mutant, K433M. We conclude that P-glycoprotein does not represent the volume-sensitive Cl channel but that its expression modulates volume sensitivity of the Cl channel in a manner independent of its ATPase activity or of the protein kinase C activity. Received: 25 September 1996/Revised: 12 December 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号