首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 504 毫秒
1.
Caspases, the intracellular cysteine proteinases, play a central role in the process of programmed cell death. Caspases induce apoptosis through a highly integrated and regulated biological, biochemical, and genetic mechanism. Although proper execution of apoptosis is fundamental for cell growth artificial caspase inhibition can be considered in certain degenerative diseases. This realization has attracted attention towards caspases as likely targets for pharmaceutical intervention. Here we analyze the structure of caspase-6 and also predict the possible glycosylation, phosphorylation, and myristoylation sites as very little is known about the functional role of these post translational modifications in the caspase family. These studies are expected to improve our understanding of associations of caspases with other molecules and the possible role played in apoptosis. The predicted tertiary structure of caspase-6 as well as the enzyme complexed with its inhibitor (tetra-peptide aldehyde Ac-IETD-CHO) shows similar binding feature as seen in other caspases. Cys/His catalytic dyad for caspase-6 and -8 show possible involvement of a third component, i.e., Pro29 and Arg258 in caspase-6 and caspase-8, respectively. Changes in the length and nature of loop between alpha5 and beta9, involved in defining the S4 subsite, result in modification of P4 (Ile) site. These interactions provide detail of inhibitor binding on structural level and also help in designing mutants for structure-function studies of these enzymes.  相似文献   

2.
Caspase-8 is an initiator enzyme in the Fas-mediated pathway of which the downstream executioner caspase-3 is a physiological target. Caspases are cysteine proteases that are specific for substrates with an aspartic acid residue at the P(1) position and have an optimal recognition motif that incorporates four amino acid residues N-terminal to the cleavage site. Caspase-8 has been classified as a group III caspase member because it shows a preference for a small hydrophobic residue at the P(4) substrate position. We report the X-ray crystallographic structure of caspase-8 in complex with benzyloxycarbonyl-Asp-Glu-Val-Asp-aldehyde (Z-DEVD), a specific group II caspase inhibitor. The structure shows that the inhibitor interacts favourably with the enzyme in subsite S(4). Kinetic data reveal that Z-DEVD (K(i) 2 nM) is an almost equally potent inhibitor of caspase-8 as the specific group III inhibitor Boc-IETD-aldehyde (K(i) 1 nM). In view of this finding, the original classification of caspases into three specificity groups needs to be modified, at least for caspase-8, which tolerates small hydrophobic residues as well as the acidic residue Asp in subsite S(4). We propose that the subsite S(3) must be considered as an important specificity-determining factor.  相似文献   

3.
Structural basis of caspase-7 inhibition by XIAP   总被引:33,自引:0,他引:33  
Chai J  Shiozaki E  Srinivasula SM  Wu Q  Datta P  Alnemri ES  Shi Y  Dataa P 《Cell》2001,104(5):769-780
The inhibitor of apoptosis (IAP) proteins suppress cell death by inhibiting the catalytic activity of caspases. Here we present the crystal structure of caspase-7 in complex with a potent inhibitory fragment from XIAP at 2.45 A resolution. An 18-residue XIAP peptide binds the catalytic groove of caspase-7, making extensive contacts to the residues that are essential for its catalytic activity. Strikingly, despite a reversal of relative orientation, a subset of interactions between caspase-7 and XIAP closely resemble those between caspase-7 and its tetrapeptide inhibitor DEVD-CHO. Our biochemical and structural analyses reveal that the BIR domains are dispensable for the inhibition of caspase-3 and -7. This study provides a structural basis for the design of the next-generation caspase inhibitors.  相似文献   

4.
In the intrinsic apoptosis pathway, mitochondrial disruption leads to the release of multiple apoptosis signaling molecules, triggering both caspase-dependent and -independent cell death. The release of cytochrome c induces the formation of the apoptosome, resulting in caspase-9 activation. Multiple caspases are activated downstream of caspase-9, however, the precise order of caspase activation downstream of caspase-9 in intact cells has not been completely resolved. To characterize the caspase-9 signaling cascade in intact cells, we employed chemically induced dimerization to activate caspase-9 specifically. Dimerization of caspase-9 led to rapid activation of effector caspases, including caspases-3, -6 and -7, as well as initiator caspases, including caspases-2, -8 and -10, in H9 and Jurkat cells. Knockdown of caspase-3 suppressed caspase-9-induced processing of the other caspases downstream of caspase-9. Silencing of caspase-6 partially inhibited caspase-9-mediated processing of caspases-2, -3 and -10, while silencing of caspase-7 partially inhibited caspase-9-induced processing of caspase-2, -3, -6 and -10. In contrast, deficiency in caspase-2, -8 or -10 did not significantly affect the caspase-9-induced caspase cascade. Our data provide novel insights into the ordering of a caspase signaling network downstream of caspase-9 in intact cells during apoptosis.  相似文献   

5.
BACKGROUND: Caspases are a family of cysteine proteases that have important intracellular roles in inflammation and apoptosis. Caspase-8 activates downstream caspases which are unable to carry out autocatalytic processing and activation. Caspase-8 is designated as an initiator caspase and is believed to sit at the apex of the Fas- or TNF-mediated apoptotic cascade. In view of this role, the enzyme is an attractive target for the design of inhibitors aimed at blocking the undesirable cell death associated with a range of degenerative disorders. RESULTS: The structure of recombinant human caspase-8, covalently modified with the inhibitor acetyl-Ile-Glu-Thr-Asp-aldehyde, has been determined by X-ray crystallography to 1.2 A resolution. The asymmetric unit contains the p18-p11 heterodimer; the biologically important molecule contains two dimers. The overall fold is very similar to that of caspase-1 and caspase-3, but significant differences exist in the substrate-binding region. The structure answers questions about the enzyme-inhibitor complex that could not be explained from earlier caspase structures solved at lower resolution. CONCLUSIONS: The catalytic triad in caspase-8 comprises Cys360, His317 and the backbone carbonyl oxygen atom of Arg258, which points towards the Nepsilon atom of His317. The oxygen atom attached to the tetrahedral carbon in the thiohemiacetal group of the inhibitor is hydrogen bonded to Ndelta of His317, and is not in a region characteristic of a classical 'oxyanion hole'. The N-acetyl group of the inhibitor is in the trans configuration. The caspase-8-inhibitor structure provides the basis for understanding structure/function relationships in this important initiator of the proteolytic cascade that leads to programmed cell death.  相似文献   

6.
Apoptosis appears to be the death mechanism of pericyte loss observed in diabetic retinopathy. We have previously shown that advanced glycation end-products (AGE-MGX) induce apoptosis of retinal pericytes in culture associated with diacylglycerol (DAG)/ceramide production. In the present study, we investigated possible caspase involvement in this process. Bovine retinal pericytes (BRP) were cultured with AGE-MGX and apoptosis examined after annexin V staining. Effects of peptidic inhibitors of caspases were determined on DAG/ceramide production and apoptosis. Pan-caspase inhibitor z-VAD-fmk (50 microM) was able to inhibit both DAG/ceramide production and apoptosis, whereas caspase-3-like inhibitor z-DEVD-fmk (50 microM) or caspase-9 inhibitor z-LEHD-fmk (50 microM) was only active on apoptosis. This differential effect strongly suggests involvement of initiator caspase(s) upstream and effector caspase(s) downstream DAG/ceramide production in AGE-mediated apoptosis. Pericyte treatment with caspase-8 inhibitor z-IETD-fmk (50 microM) did not protect cells against AGE-induced apoptosis and we failed to detect caspase-8 in pericytes by immunoblotting assay. Interestingly, one inhibitor of caspase-10 and related caspases z-AEVD-fmk (50 microM) inhibited both AGE-MGX-induced apoptosis and DAG/ceramide formation in pericytes. Cleavage of caspase-10 precursor into its active subunits was demonstrated by immunoblotting assay in pericytes incubated with AGE-MGX. These results strongly suggest that caspase-10, but not caspase-8, might be involved in the early phase of AGE-induced pericyte apoptosis, in contrast to caspase-9 and -3-like enzymes involved after DAG/ceramide production. This finding may provide new therapeutic perspectives for early treatment in diabetic retinopathy.  相似文献   

7.
Caspases, the key enzymes in apoptosis, are synthesized as proenzymes and converted into active form by proteolytic cleavage. The residues on active site reorganize during the activation process as shown in the comparative studies of crystallographic structures of procaspase-7 and its mature form. On the other hand, the proenzyme itself has some activity. Aiming to characterize the activation process, the comparative kinetic study for the pro- and mature caspase-3 was performed. In 1/K(M) versus pH study, a residue with pKa of 6.89+/-0.13 was detected only in caspase-3. While Vmax versus pH kinetic results were consistent with the existence of a residue with pKa of 6.21+/-0.06 in procaspase-3 mutant (D9A/D28A/D175A) but not in caspase-3. In the inactivation assays with diethylpyrocarbonate, a residue (pKa, 6.61+/-0.05) could be determined only for caspase-3 whereas with iodoacetamide a residue with pKa value (6.01+/-0.05) could be assigned only for procaspase-3. Considering that those residues could be protected by caspase-3-specific inhibitor from the inactivation, the modifiers are histidine- and cysteine-specific, respectively, and the involvement of these residues in the characteristic catalytic dyad of caspases, the results indicate that the pKa values of the catalytic histidine and cysteine residues are changed during the activation process.  相似文献   

8.
Caspases play an important role in programmed cell death. Caspase-3 is a key executioner of apoptosis, whose activation is mediated by the initiator caspases, caspase-8 and caspase-9. The present study tested the hypothesis that cerebral hypoxia results in increased activation and expression of caspases-3, -8, and -9 in the cytosolic fraction of the cerebral cortex of newborn piglets. To test this hypothesis the activity and expression of caspases-3, -8, and -9 were determined in newborn piglets divided into normoxic and hypoxic groups. Caspase activity was determined spectrofluorometrically using enzyme specific substrates. The expression of caspase protein was assessed by Western blot analysis using enzyme specific antibody. Caspases-3, -8, and -9 activity and expression was significantly higher in the hypoxic group than in the normoxic group. These results demonstrate that hypoxia induces activation and increased expression of both the initiator caspases and the executioner caspase in the cerebral cortex of newborn piglets. We conclude that hypoxia results in stimulation of both the pathways of caspase-3 activation.  相似文献   

9.
ASK1 activates JNK and p38 mitogen-activated protein kinases and constitutes a pivotal signaling pathway in cytokine- and stress-induced apoptosis. However, little is known about the mechanism of how ASK1 executes apoptosis. Here we investigated the roles of caspases and mitochondria in ASK1-induced apoptosis. We found that benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk), a broad-spectrum caspase inhibitor, mostly inhibited ASK1-induced cell death, suggesting that caspases are required for ASK1-induced apoptosis. Overexpression of ASK1DeltaN, a constitutively active mutant of ASK1, induced cytochrome c release from mitochondria and activation of caspase-9 and caspase-3 but not of caspase-8-like proteases. Consistently, caspase-8-deficient (Casp8 (-/-)) cells were sensitive to ASK1-induced caspase-3 activation and apoptosis, suggesting that caspase-8 is dispensable for ASK1-induced apoptosis, whereas ASK1 failed to activate caspase-3 in caspase-9-dificient (Casp9 (-/-)) cells. Moreover, mitochondrial cytochrome c release, which was not inhibited by zVAD-fmk, preceded the onset of caspase-3 activation and cell death induced by ASK1. ASK1 thus appears to execute apoptosis mainly by the mitochondria-dependent caspase activation.  相似文献   

10.
It has been documented that caspase-8, a central player in apoptosis, is also crucial for TCR-mediated NF-κB activation. However, whether other caspases are also involved this process is unknown. In this report, we showed that in addition to caspase-8, caspase-9 is required for TCR-mediated NF-κB activation. Caspase-9 induces activation of PKC-θ, phosphorylation of Bcl10 and NF-κB activation in a caspase-3-dependent manner, but it appears that Bcl10 phosphorylation is uncoupled from NF-κB activation. Furthermore, caspase-8 lies upstream of caspase-9 during T cell activation. Therefore, TCR ligation elicits a caspase cascade involving caspase-8, caspase-9 and caspase-3 which initiates PKC-θ-dependent pathway leading to NF-κB activation and PKC-θ-independent Bcl10 phosphorylation which limits NF-kB activity.  相似文献   

11.
Caspases are essential proteases in programmed cell death and inflammation. Studies in murine and human cells have led to the characterization of 14 members of this enzyme family. Here we report the identification of caspase-15, a novel caspase that is expressed in various mammalian species including pig, dog, and cattle. The caspase-15 protein contains a catalytic domain with all amino acid residues critical for caspase activity and a prodomain that is predicted to fold into a pyrin domain structure, which is a unique feature among mammalian caspases. Recombinant porcine caspase-15 underwent autocatalytic processing into its subunits and cleaved both tetrapeptide caspase substrates and the apoptosis regulator protein Bid in vitro. Overexpression of caspase-15 in mammalian cells induced proenzyme maturation, cleavage of Bid, activation of caspase-3, and eventually cell death. Both the proteolytic and the pro-apoptotic activity of caspase-15 were abolished by mutation of the active site cysteine. Since a homolog of caspase-15 is absent in the human and the mouse genome, our results reveal an unexpected variability in the molecular apoptotic machinery of mammals.  相似文献   

12.
Caspase-mediated apoptosis has important roles in normal cell differentiation and aging and in many diseases including cancer, neuromuscular disorders and neurodegenerative diseases. Therefore, modulation of caspase activity and conformational states is of therapeutic importance. We report crystal structures of a new unliganded conformation of caspase-7 and the inhibited caspase-7 with the tetrapeptide Ac-YVAD-Cho. Different conformational states and mechanisms for substrate recognition have been proposed based on unliganded structures of the redundant apoptotic executioner caspase-3 and -7. The current study shows that the executioner caspase-3 and -7 have similar conformations for the unliganded active site as well as the inhibitor-bound active site. The new unliganded caspase-7 structure exhibits the tyrosine flipping mechanism in which the Tyr230 has rotated to block entry to the S2 binding site similar to the active site conformation of unliganded caspase-3. The inhibited structure of caspase-7/YVAD shows that the P4 Tyr binds the S4 region specific to polar residues at the expense of a main chain hydrogen bond between the P4 amide and carbonyl oxygen of caspase-7 Gln 276, which is similar to the caspase-3 complex. This new knowledge of the structures and conformational states of unliganded and inhibited caspases will be important for the design of drugs to modulate caspase activity and apoptosis.  相似文献   

13.
Mechanism of XIAP-mediated inhibition of caspase-9   总被引:27,自引:0,他引:27  
The inhibitor of apoptosis (IAP) proteins potently inhibit the catalytic activity of caspases. While profound insight into the inhibition of the effector caspases has been gained in recent years, the mechanism of how the initiator caspase-9 is regulated by IAPs remains enigmatic. This paper reports the crystal structure of caspase-9 in an inhibitory complex with the third baculoviral IAP repeat (BIR3) of XIAP at 2.4 A resolution. The structure reveals that the BIR3 domain forms a heterodimer with a caspase-9 monomer. Strikingly, the surface of caspase-9 that interacts with BIR3 also mediates its homodimerization. We demonstrate that monomeric caspase-9 is catalytically inactive due to the absence of a supporting sequence element that could be provided by homodimerization. Thus, XIAP sequesters caspase-9 in a monomeric state, which serves to prevent catalytic activity. These studies, in conjunction with other observations, define a unified mechanism for the activation of all caspases.  相似文献   

14.
Caspases are responsible for the execution of programmed cell death (apoptosis) and must undergo proteolytic activation, in response to apoptotic stimuli, to function. The mechanism of initiator caspase activation has been generalized by the induced proximity model, which is thought to drive dimerization-mediated activation of caspases. The initiator caspase, caspase-9, exists predominantly as a monomer in solution. To examine the induced proximity model, we engineered a constitutively dimeric caspase-9 by relieving steric hindrance at the dimer interface. Crystal structure of the engineered caspase-9 closely resembles that of the wild-type (WT) caspase-9, including all relevant structural details and the asymmetric nature of two monomers. Compared to the WT caspase-9, this engineered dimer exhibits a higher level of catalytic activity in vitro and induces more efficient cell death when expressed. However, the catalytic activity of the dimeric caspase-9 is only a small fraction of that for the Apaf-1-activated caspase-9. Furthermore, in contrast to the WT caspase-9, the activity of the dimeric caspase-9 can no longer be significantly enhanced in an Apaf-1-dependent manner. These findings suggest that dimerization of caspase-9 may be qualitatively different from its activation by Apaf-1, and in conjunction with other evidence, posit an induced conformation model for the activation of initiator caspases.  相似文献   

15.
Apoptosis in response to developmental cues and stress stimuli is mediated by caspases that are regulated by the Bcl-2 protein family. Although caspases 2 and 9 have each been proposed as the apical caspase in that pathway, neither is indispensable for the apoptosis of leukocytes or fibroblasts. To investigate whether these caspases share a redundant role in apoptosis initiation, we generated caspase-2(-/-)9(-/-) mice. Their overt phenotype, embryonic brain malformation and perinatal lethality mirrored that of caspase-9(-/-) mice but were not exacerbated. Analysis of adult mice reconstituted with caspase-2(-/-)9(-/-) hematopoietic cells revealed that the absence of both caspases did not influence hematopoietic development. Furthermore, lymphocytes and fibroblasts lacking both remained sensitive to diverse apoptotic stimuli. Dying caspase-2(-/-)9(-/-) lymphocytes displayed multiple hallmarks of caspase-dependent apoptosis, including the release of cytochrome c from mitochondria, and their demise was antagonized by several caspase inhibitors. These findings suggest that caspases other than caspases 2 and 9 can promote cytochrome c release and initiate Bcl-2-regulated apoptosis.  相似文献   

16.
The inhibitor of apoptosis proteins (IAPs) regulate the caspase family of cysteine proteases, which play an important role in the execution of programmed cell death. Human X-linked inhibitor of apoptosis protein (XIAP) is a potent inhibitor of caspases-3, -7, and -9. Here we show that the Bir3 domain is the minimal region of XIAP that is needed for potent caspase-9 inhibition. The three-dimensional structure of the Bir3 domain of XIAP, determined by NMR spectroscopy, resembles a classical zinc finger and consists of five alpha-helices, a three-stranded beta-sheet, and a zinc atom chelated to three cysteines and one histidine. The structure of the Bir3 domain is similar to that of the Bir2 domain of XIAP but differs from the previously determined structure of the Bir3 domain of MIHB. Based on site-directed mutagenesis, we have identified the regions of the Bir3 domain of XIAP that are important for inhibiting caspase-9. Despite the structural similarities of the Bir2 and Bir3 domain of XIAP, a different set of residues were found to be critical for inhibiting the individual caspases. These results suggest that XIAP inhibits caspase-3 and caspase-9 in a different manner.  相似文献   

17.
Deficiency in caspase-9 or caspase-3 induces compensatory caspase activation   总被引:17,自引:0,他引:17  
Dysregulation of apoptosis contributes to the pathogenesis of many human diseases. As effectors of the apoptotic machinery, caspases are considered potential therapeutic targets. Using an established in vivo model of Fas-mediated apoptosis, we demonstrate here that elimination of certain caspases was compensated in vivo by the activation of other caspases. Hepatocyte apoptosis and mouse death induced by the Fas agonistic antibody Jo2 required proapoptotic Bcl-2 family member Bid and used a Bid-mediated mitochondrial pathway of caspase activation; deficiency in caspases essential for this pathway, caspase-9 or caspase-3, unexpectedly resulted in rapid activation of alternate caspases after injection of Jo2, and therefore failed to protect mice against Jo2 toxicity. Moreover, both ultraviolet and gamma irradiation, two established inducers of the mitochondrial caspase-activation pathway, also elicited compensatory activation of caspases in cultured caspase-3(-/-) hepatocytes, indicating that the compensatory caspase activation was mediated through the mitochondria. Our findings provide direct experimental evidence for compensatory pathways of caspase activation. This issue should therefore be considered in developing caspase inhibitors for therapeutic applications.  相似文献   

18.
Caspases are cysteine proteases that are key effectors in apoptotic cell death. Currently, there is a lack of tools that can be used to monitor the regulation of specific caspases in the context of distinct apoptotic programs. We describe the development of highly selective inhibitors and active site probes and their applications to directly monitor executioner (caspase-3 and -7) and initiator (caspase-8 and -9) caspase activity. Specifically, these reagents were used to dissect the kinetics of caspase activation upon stimulation of apoptosis in cell-free extracts and intact cells. These studies identified a full-length caspase-7 intermediate that becomes catalytically activated early in the pathway and whose further processing is mediated by mature executioner caspases rather than initiator caspases. This form also shows distinct inhibitor sensitivity compared to processed caspase-7. Our data suggest that caspase-7 activation proceeds through a previously uncharacterized intermediate that is formed without cleavage of the intact zymogen.  相似文献   

19.
Apoptosis plays important roles in host defense, including the elimination of virus-infected cells. The executioners of apoptosis are caspase family proteases. We report that vaccinia virus-encoded F1L protein, previously recognized as anti-apoptotic viral Bcl-2 family protein, is a caspase-9 inhibitor. F1L binds to and specifically inhibits caspase-9, the apical protease in the mitochondrial cell death pathway while failing to inhibit other caspases. In cells, F1L inhibits apoptosis and proteolytic processing of caspases induced by overexpression of caspase-9 but not caspase-8. An N-terminal region of F1L preceding the Bcl-2-like fold accounts for caspase-9 inhibition and significantly contributes to the anti-apoptotic activity of F1L. Viral F1L thus provides the first example of caspase inhibition by a Bcl-2 family member; it functions both as a suppressor of proapoptotic Bcl-2 family proteins and as an inhibitor of caspase-9, thereby neutralizing two sequential steps in the mitochondrial cell death pathway.  相似文献   

20.
Aberrant apoptosis has been associated with the development and therapeutic resistance of cancer. Recent studies suggest that caspase deficiency/downregulation is frequently detected in different cancers. We have previously shown that caspase-3 reconstitution significantly sensitized MCF-7 cells to doxorubicin and etoposide. In contrast to the well established role of caspase-3 as an effector caspase, the focus of this study is to delineate caspase-3 induced feedback activation of the apical caspases-2, -8, -9 and -10A in doxorubicin and TNF-α induced apoptosis. Using cell-free systems we show that caspases-9 and 2 are the most sensitive, caspase-8 is less sensitive and caspase-10A is the least sensitive to caspase-3 mediated-cleavage. When apoptosis is induced by doxorubicin or TNF-α in an intact cell model, cleavage of caspases-8 and -9, but not caspase-2, was markedly enhanced by caspase-3. Caspase-3 mediated-feedback and activation of caspase-8 and -9 in MCF-7/C3 cells is further supported by an increase in the cleavage of caspase-8 and 9 substrates and cytochrome c release. These data indicate that, in addition to its function as an effector caspase, caspase-3 plays an important role in maximizing the activation of apical caspases and crosstalk between the two major apoptotic pathways. The significant impact of caspase-3 on both effector and apical caspases suggests that modulation of caspase-3 activity would be a useful approach to overcome drug resistance in clinical oncology. XiaoHe Yang: This work was supported in part by the Career Development Award DAMD17-99-1-9180 from Department of Defense to X.H.Y.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号