首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The number of individuals with gluten intolerance has increased dramatically over the last years. To date, the only therapy for gluten intolerance is the complete avoidance of dietary gluten. To sustain a strictly gluten-free diet, however, is very challenging. Therefore, there is need for a non-dietary therapy. Any such treatment must appreciate that the immunogenic part of gluten are gliadin peptides which are poorly degraded by the enzymes of the gastrointestinal tract. Probiotic therapy and oral enzyme therapy containing gluten-degrading bacteria (GDB) and their gliadin-digesting enzymes are possible new approaches for the treatment of gluten intolerance, however effectively isolating GDB for these treatments is problematic. The goal of this study was to develop an easy technique to isolate GDB rapidly and efficiently with the hope it might lead to newer ways of developing either probiotics or traditional medicines to treat gluten intolerance. Several researchers have already isolated successfully GDB by using gluten minimal or limited agar plates. Although these plates can be used to isolate bacteria which can tolerate gluten, further assays are needed to investigate if the same bacteria can also digest gluten. The agar plates we developed can detect bacteria which cannot only tolerate gluten but are able to digest it as well. Therefore, we were able to combine two steps into one step. Using such technologies, we were able to isolate five GDB from saliva and stool, and identified three bacterial reference strains with gluten-degrading activity. The technique we developed to isolate bacteria with gluten-degrading activity is fast, effective, and easy to use. The GDB isolated by our technology could have potential as part of a probiotic or enzymatic therapy for people with gluten intolerance.  相似文献   

2.
Effects of cell wall components on the functionality of wheat gluten   总被引:2,自引:0,他引:2  
Normal white wheat flours and especially whole meal flour contain solids from the inner endosperm cell walls, from germ, aleurone layer and the outer layers of cereal grains. These solids can prevent either gluten formation or gas cell structure. The addition of small amounts of pericarp layers (1–2%) to wheat flour had a marked detrimental effect on loaf volume. Microstructural studies indicated that in particular the epicarp hairs appeared to disturb the gas cell structure. The detrimental effects of insoluble cell walls can be prevented by using endoxylanases. It has been shown that some oxidative enzymes, naturally present in flour or added to the dough, will oxidise water-extractable arabinoxylans via ferulic acid bridges, and the resulting arabinoxylan gel will hinder gluten formation. The negative effects of water-unextractable arabinoxylans on gluten yield and rheological properties can be compensated by the addition of ferulic acid. Free ferulic acid can probably prevent arabinoxylan cross-linking via ferulic acid.  相似文献   

3.

Background

Due to the high proline content of gluten molecules, gastrointestinal proteases are unable to fully degrade them leaving large proline-rich gluten fragments intact, including an immunogenic 33-mer from α-gliadin and a 26-mer from γ-gliadin. These latter peptides can trigger pro-inflammatory T cell responses resulting in tissue remodeling, malnutrition and a variety of other complications. A strict lifelong gluten-free diet is currently the only available treatment to cope with gluten intolerance. Post-proline cutting enzymes have been shown to effectively degrade the immunogenic gluten peptides and have been proposed as oral supplements. Several existing digestive enzyme supplements also claim to aid in gluten degradation. Here we investigate the effectiveness of such existing enzyme supplements in comparison with a well characterized post-proline cutting enzyme, Prolyl EndoPeptidase from Aspergillus niger (AN-PEP).

Methods

Five commercially available digestive enzyme supplements along with purified digestive enzymes were subjected to 1) enzyme assays and 2) mass spectrometric identification. Gluten epitope degradation was monitored by 1) R5 ELISA, 2) mass spectrometric analysis of the degradation products and 3) T cell proliferation assays.

Findings

The digestive enzyme supplements showed comparable proteolytic activities with near neutral pH optima and modest gluten detoxification properties as determined by ELISA. Mass spectrometric analysis revealed the presence of many different enzymes including amylases and a variety of different proteases with aminopeptidase and carboxypeptidase activity. The enzyme supplements leave the nine immunogenic epitopes of the 26-mer and 33-mer gliadin fragments largely intact. In contrast, the pure enzyme AN-PEP effectively degraded all nine epitopes in the pH range of the stomach at much lower dose. T cell proliferation assays confirmed the mass spectrometric data.

Conclusion

Currently available digestive enzyme supplements are ineffective in degrading immunogenic gluten epitopes.  相似文献   

4.
Celiac disease is a T cell-driven intolerance to wheat gluten. The gluten-derived T cell epitopes are proline-rich and thereby highly resistant to proteolytic degradation within the gastrointestinal tract. Oral supplementation with prolyl oligopeptidases has therefore been proposed as a potential therapeutic approach. The enzymes studied, however, have limitations as they are irreversibly inactivated by pepsin and acidic pH, both present in the stomach. As a consequence, these enzymes will fail to degrade gluten before it reaches the small intestine, the site where gluten induces inflammatory T cell responses that lead to celiac disease. We have now determined the usefulness of a newly identified prolyl endoprotease from Aspergillus niger for this purpose. Gluten and its peptic/tryptic digest were treated with prolyl endoprotease, and the destruction of the T cell epitopes was tested using mass spectrometry, T cell proliferation assays, ELISA, reverse-phase HPLC, SDS-PAGE, and Western blotting. We observed that the A. niger prolyl endoprotease works optimally at 4-5 pH, remains stable at 2 pH, and is completely resistant to digestion with pepsin. Moreover, the A. niger-derived enzyme efficiently degraded all tested T cell stimulatory peptides as well as intact gluten molecules. On average, the endoprotease from A. niger degraded gluten peptides 60 times faster than a prolyl oligopeptidase. Together these results indicate that the enzyme from A. niger efficiently degrades gluten proteins. Future studies are required to determine if the prolyl endoprotease can be used as an oral supplement to reduce gluten intake in patients.  相似文献   

5.
Transglutaminase 2 (TG2) is well characterized as the main autoantigen of celiac disease. The ability of TG2 to deamidate and crosslink gluten peptides is essential for the gluten-dependent production of TG2 specific autoantibodies. In patients with primarily extraintestinal manifestation of gluten sensitivity the repertoire of autoantibodies may be different. In dermatitis herpetiformis (DH), TG3 appears to be the target autoantigen whereas in gluten ataxia (GA) autoantibodies reactive with TG6 are present. A functional role for TG3 and TG6 in these diseases has yet to be described. It is also not known whether these enzymes can use gluten peptides implicated in the pathology as substrates. We here report that similar to TG2, TG3 and TG6 can specifically deamidate gluten T cell epitopes. However, the fine specificities of the enzymes were found to differ. TG2 can form covalent complexes with gluten by iso-peptide and thioester bonds. We found that both TG3 and TG6 were able to complex with gluten peptides through thioester linkage although less efficiently than TG2, whereas TG6 but not TG3 was able to form iso-peptide linked complexes. Our findings lend credence to the notion that TG3 and TG6 are involved in the gluten-induced autoimmune responses of DH and GA.  相似文献   

6.

Background and Aims

Celiac sprue is a life-long disease characterized by an intestinal inflammatory response to dietary gluten. A gluten-free diet is an effective treatment for most patients, but accidental ingestion of gluten is common, leading to incomplete recovery or relapse. Food-grade proteases capable of detoxifying moderate quantities of dietary gluten could mitigate this problem.

Methods

We evaluated the gluten detoxification properties of two food-grade enzymes, aspergillopepsin (ASP) from Aspergillus niger and dipeptidyl peptidase IV (DPPIV) from Aspergillus oryzae. The ability of each enzyme to hydrolyze gluten was tested against synthetic gluten peptides, a recombinant gluten protein, and simulated gastric digests of whole gluten and whole-wheat bread. Reaction products were analyzed by mass spectrometry, HPLC, ELISA with a monoclonal antibody that recognizes an immunodominant gluten epitope, and a T cell proliferation assay.

Results

ASP markedly enhanced gluten digestion relative to pepsin, and cleaved recombinant α2-gliadin at multiple sites in a non-specific manner. When used alone, neither ASP nor DPPIV efficiently cleaved synthetic immunotoxic gluten peptides. This lack of specificity for gluten was especially evident in the presence of casein, a competing dietary protein. However, supplementation of ASP with DPPIV enabled detoxification of moderate amounts of gluten in the presence of excess casein and in whole-wheat bread. ASP was also effective at enhancing the gluten-detoxifying efficacy of cysteine endoprotease EP-B2 under simulated gastric conditions.

Conclusions

Clinical studies are warranted to evaluate whether a fixed dose ratio combination of ASP and DPPIV can provide near-term relief for celiac patients suffering from inadvertent gluten exposure. Due to its markedly greater hydrolytic activity against gluten than endogenous pepsin, food-grade ASP may also augment the activity of therapeutically relevant doses of glutenases such as EP-B2 and certain prolyl endopeptidases.  相似文献   

7.
Studies using electrophoresis, gel chromatography, viscometry, and calorimetry revealed an interrelation of several physicochemical properties of proteins of soft wheat grown under conditions of cool and wet weather with rheological characteristics of gluten and dough and bread quality. The ratio of gliadin and albumin-globulin polypeptides in flour with short-tearing gluten was much lower compared to that in flour with normal gluten. Proteins from flour with short-tearing gluten, including the water-soluble and salt-soluble fraction, had a loose spatial structure. Gluten fractions of this gluten (gliadin and glutenin) were characterized by a more compact and elongated structure compared to normal gluten. As distinct from normal gluten, the conformation of protein particles in short-tearing gluten depended little on hydrophobic interactions. The results suggest that the main components of grain determine the rheological properties of short-tearing gluten.  相似文献   

8.
Studies using electrophoresis, gel chromatography, viscometry, and calorimetry revealed an interrelation of several physicochemical properties of proteins of soft wheat grown under conditions of cool and wet weather with rheological characteristics of gluten and dough and bread quality. The ratio of gliadin and albumin-globulin polypeptides in flour with short-tearing gluten was much lower compared to that in flour with normal gluten. Proteins from flour with short-tearing gluten, including the water-soluble and salt-soluble fraction, had a loose spatial structure. Gluten fractions of this gluten (gliadin and glutenin) were characterized by a more compact and elongated structure compared to normal gluten. As distinct from normal gluten, the conformation of protein particles in short-tearing gluten depended little on hydrophobic interactions. The results suggest that the main components of grain determine the rheological properties of short-tearing gluten.  相似文献   

9.
Hemoglobin, aldolase and glyceraldehyde 3-phosphate dehydrogenase are known to bind to the cytoplasmic domain of band 3 protein. Binding of glycolytic enzymes to band 3 protein is inhibited by its amino-terminal fragments. To precisely localize the sequence portion of band 3 protein to which hemoglobin binds and to see whether the same region of amino-acid sequence binds both hemoglobin and glycolytic enzymes, a simple, direct solid-phase binding assay was developed. Peptides generated from the 23-kDa fragment by trypsin, cyanogen bromide and mild acid hydrolysis were used as inhibitors to determine the minimal sequence structure involved in the binding of the 23-kDa fragment to hemoglobin. The shortest peptide which inhibits the binding of the 23-kDa fragment is an acid cleavage peptide containing the sequence positions 1 to 23. This sequence is unusual as 14 of its residues are negatively charged, it contains no basic residues and has its amino terminus blocked. Using aldolase, glyceraldehyde-3-phosphate dehydrogenase and hemoglobin as competitive inhibitors in the binding of 23-kDa fragment, the affinity of hemoglobin to this fragment appears several-fold weaker than that of both the enzymes. These findings demonstrate that glycolytic enzymes and hemoglobin bind competitively to the same polyanionic sequence region of band 3 protein.  相似文献   

10.
The interaction of protein with lipid in wheat gluten has been studied by electron spin resonance (ESR). The gluten in the flour suspension was spin-labeled with a fatty acid spin label (N-oxyl-4,4'-dimethyloxazolidine derivative of 5-ketostearic acid) and washed out from the flour. The ESR spectra of the spin label incorporated in gluten exhibited clearly separated parallel and perpendicular hyperfine splittings. The orientation of the gluten lipid and its fluidity showed temperature dependence. Phase transition was observed at 25°C. Compared with gluten, vesicles of the lipids extracted from flour were found to be in a less oriented, highly fluid state, and with much lower activation energy for rotational viscosity, while the reconstituted gluten, which was prepared by mixing purified gluten protein and the extracted lipids, had a lipid environment similar to that of gluten. The results indicate that the lipid was immobilized in the gluten matrix by strong interaction with protein.  相似文献   

11.

Background

Gluten proteins, prominent constituents of barley, wheat and rye, cause celiac disease in genetically predisposed subjects. Gluten is notoriously difficult to digest by mammalian proteolytic enzymes and the protease-resistant domains contain multiple immunogenic epitopes. The aim of this study was to identify novel sources of gluten-digesting microbial enzymes from the upper gastro-intestinal tract with the potential to neutralize gluten epitopes.

Methodology/Principal Findings

Oral microorganisms with gluten-degrading capacity were obtained by a selective plating strategy using gluten agar. Microbial speciations were carried out by 16S rDNA gene sequencing. Enzyme activities were assessed using gliadin-derived enzymatic substrates, gliadins in solution, gliadin zymography, and 33-mer α-gliadin and 26-mer γ-gliadin immunogenic peptides. Fragments of the gliadin peptides were separated by RP-HPLC and structurally characterized by mass spectrometry. Strains with high activity towards gluten were typed as Rothia mucilaginosa and Rothia aeria. Gliadins (250 µg/ml) added to Rothia cell suspensions (OD620 1.2) were degraded by 50% after ∼30 min of incubation. Importantly, the 33-mer and 26-mer immunogenic peptides were also cleaved, primarily C-terminal to Xaa-Pro-Gln (XPQ) and Xaa-Pro-Tyr (XPY). The major gliadin-degrading enzymes produced by the Rothia strains were ∼70–75 kDa in size, and the enzyme expressed by Rothia aeria was active over a wide pH range (pH 3–10).

Conclusion/Significance

While the human digestive enzyme system lacks the capacity to cleave immunogenic gluten, such activities are naturally present in the oral microbial enzyme repertoire. The identified bacteria may be exploited for physiologic degradation of harmful gluten peptides.  相似文献   

12.
US Patent No. 5,030,268 discloses that corn gluten meal, the protein fraction of corn (Zea mays L.) grain, can be used as a natural preemergence herbicide. However, corn gluten meal is insoluble in water, and this characteristic renders it difficult to apply as a herbicide. To seek a watersoluble material with more potent herbicidal activity, the phytotoxicity of various samples derived from corn gluten meal and other related crop materials were evaluated by using three different grass species under controlled environments. Greenhouse and growth chamber bioassays showed that the sample of enzymatically hydrolyzed corn gluten meal was more herbicidally active than the corn gluten itself and was highly water soluble. Gluten hydrolysate prepared with bacterial source proteinase had the greatest inhibitory activity to the root growth of germinating seeds. This water-soluble material derived from corn gluten meal had a growth-regulating effect on the root system and can be used as a natural herbicide.Journal Paper No. J-15609 of Iowa Agriculture and Home Economics Experiment Station, Ames, IA Project No. 3149.  相似文献   

13.
In corn wet milling, dry matter can be separated from liquids in process streams with centrifuges or vacuum belt filtration (VBF). Because separations usually are not complete, dry matter can be lost in the liquid streams (overflow from the gluten thickener centrifuge and filtrate from VBF). This represents a loss of nutrients, especially protein, to low valued coproducts and reduces quality of water for recycling within the process. The objective was to compare microfiltration of light and heavy gluten process streams to conventional separation methods. Batches of light and heavy gluten were obtained from a wet mill plant and processed by microfiltration. Samples of permeate and concentrate from microfiltration were analyzed and compared to corresponding streams from wet milling. Microfiltration of light gluten resulted in concentrate and permeate streams similar in composition to conventionally processed light gluten using a centrifuge, suggesting that microfiltration is as effective as centrifugation in partitioning solids and water in light gluten. Dewatering of heavy gluten found that conventional VBF caused dry matter concentrations in gluten cake to be higher than concentrate from microfiltration. Permeate from microfiltration of heavy gluten had higher concentrations of ash and lower soluble nitrogen than filtrate from VBF. Microfiltration was able to remove more ash from concentrate, which may improve the value of wet milling coproducts. These data demonstrated microfiltration has potential for separation of light and heavy gluten streams, but more data are needed on effectiveness and practicality.  相似文献   

14.
The objective of this study was to investigate the efficiency of multifunctional poly(ethylene glycol)-based hemoglobin conjugates crosslinked with antioxidant enzymes for their ability to protect an oxygen carrier (hemoglobin) and insulin secreting islets from the combination of hypoxic and free radical stress under simulated transplantation conditions. In this study, RINm5F cells and isolated pancreatic islets were challenged with oxidants (H(2)O(2) or xanthine and xanthine oxidase) and incubated with conjugates (hemoglobin-hemoglobin or superoxide dismutase-catalase-hemoglobin) in normoxia (21% oxygen) or hypoxia (6% or 1% oxygen). Hemoglobin protection, intracellular free radical activity and cell viability in RINm5F cells measured by methemoglobin, dichlorofluorescein-diacetate, and (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay, respectively, showed that cells were better protected by conjugates containing antioxidant enzymes. Insulin secretion from islets and qualitative confocal evaluation of viability showed beta cells were protected by conjugates containing antioxidant enzymes when exposed to induced stress. Our study suggested that antioxidant enzymes play a significant role in hemoglobin protection and thus extended cell protection.  相似文献   

15.
The proteolytic enzymes of the sporogenous Bacillus mesentericus strains 64 and 8 were tested for their ability to hydrolyse different protein substrates. The enzymes were isolated using affinity chromatography on bacillichine-silochrome, and eluted with 25% isopropanol in 0.05 M Tris-HCl buffer, pH 8.0-8.4, containing 0.01 M CaCl2. Casein, hemoglobin, elastin, albumin and synthetic peptides, Z-L-Ala-Ala-Leu-pNa and Z-L-Ala-Gly-Leu-pNa, were used as substrates. The activity of esterase was assayed in terms of indophenyl acetate cleavage. The proteinases were compared with terrilytin, a commercial preparation. The proteinase of strain 64 was active in the hydrolysis of casein, hemoglobin and elastin; its specificity was close to that of terrilytin. The proteinase of strain 8 differed from them in a higher thrombolytic and fibrinolytic activity, and had a high esterase activity.  相似文献   

16.
The presence in wheat flour of several kinds of proteases was shown on the basis of pH-activity profile, substrate specificity, and response to inhibitors. Among them, 14C-hemoglobin and cbz-Phe-Ala hydrolases (14C-Hbase and CPAase) showed optimal activity around pH 4. 14C-Hbase was inhibited almost completely by pepstatin, and CPAase was partially inhibited by DFP. About 85% of 14C-Hbase activity and 40% of CPAase activity in the original flour were retained in gluten fraction. The decrease in viscosity of the gluten solution in dilute acetic acid was effectively prevented by pepstatin. An SDS-PAGE pattern showed that hydrolysis of gluten proteins was prevented effectively by pepstatin, although not completely, and that the simultaneous addition of pepstatin and DFP prevented completely self-digestion of the gluten proteins. Therefore, pepstatin and DFP sensitive proteases were shown to be responsible for the self-digestion of gluten proteins. The mode of action of these enzymes was relatively specific for the second highest molecular weight subunit of glutenin and for some other proteins.  相似文献   

17.
Celiac disease (CD) is an autoimmune disorder in individuals that carry DQ2 or DQ8 MHC class II haplotypes, triggered by the ingestion of gluten. There is no current treatment other than a gluten-free diet (GFD). We have previously shown that the BL-7010 copolymer poly(hydroxyethyl methacrylate-co-styrene sulfonate) (P(HEMA-co-SS)) binds with higher efficiency to gliadin than to other proteins present in the small intestine, ameliorating gliadin-induced pathology in the HLA-HCD4/DQ8 model of gluten sensitivity. The aim of this study was to investigate the efficiency of two batches of BL-7010 to interact with gliadin, essential vitamins and digestive enzymes not previously tested, and to assess the ability of the copolymer to reduce gluten-associated pathology using the NOD-DQ8 mouse model, which exhibits more significant small intestinal damage when challenged with gluten than HCD4/DQ8 mice. In addition, the safety and systemic exposure of BL-7010 was evaluated in vivo (in rats) and in vitro (genetic toxicity studies). In vitro binding data showed that BL-7010 interacted with high affinity with gliadin and that BL-7010 had no interaction with the tested vitamins and digestive enzymes. BL-7010 was effective at preventing gluten-induced decreases in villus-to-crypt ratios, intraepithelial lymphocytosis and alterations in paracellular permeability and putative anion transporter-1 mRNA expression in the small intestine. In rats, BL-7010 was well-tolerated and safe following 14 days of daily repeated administration of 3000 mg/kg. BL-7010 did not exhibit any mutagenic effect in the genetic toxicity studies. Using complementary animal models and chronic gluten exposure the results demonstrate that administration of BL-7010 is effective and safe and that it is able to decrease pathology associated with gliadin sensitization warranting the progression to Phase I trials in humans.  相似文献   

18.
The effects of adding lysine, arginine and ammonia to gluten on the self-selection of protein and energy by the weanling rat simultaneously offered a choice of two diets differing only in gluten concentration (15 and 55%) were tested. Previous studies have shown that while lysine (6 g/100 g) additions to gluten decreased the amount of gluten selected by the rat from 40 to 20 g per 100 g of food eaten, selection was not related to the nutritional quality of the gluten. When graded levels of arginine (1.8, 3.6 or 7.2 g/100 g) were added to the gluten with or without lysine (0 or 6 g/100 g) the dietary protein selection was unaffected. The addition of ammonia (1.4 g/100 g as NH4Cl) to gluten had initially the same effect as lysine (6 g/100 g) but with time protein intake returned to control levels. This effect of ammonia was unaltered by arginine additions. It is concluded that the mechanisms which lead to decreases in gluten selection caused by lysine or ammonia are not similar, and that the effects of lysine on gluten selection are not caused by an increased arginine requirement for urea cycle activity.  相似文献   

19.
DNA synthesis by jejunal biopsy specimen from patients with coeliac disease and from controls was measured by an organ culture technique. The rate of synthesis in the mucosa of patients with untreated coeliac disease was almost eight times that in normal mucosa. Patients whose jejunal mucosa remained flat despite prolonged gluten withdrawal showed a rate of DNA synthesis significantly lower than that of the untreated patients, while those whose jejunal mucosa had responded to gluten withdrawal showed a rate similar to that of normal subjects. Impaired enterocyte production in nonresponsive coeliac disease may be responsible for the failure to regenerate villi after gluten withdrawal.  相似文献   

20.
Summary Ghosts of human erythrocytes prepared by hypotonic hemolysis were assayed for aldolase, triosephosphate isomerase, glyceraldehyde phosphate dehydrogenase, phosphoglycerate kinase, pyruvate kinase, lactate dehydrogenase, and glutathione peroxidase and reductase. Cryptic activity of the enzymes was demonstrated by an increase in activity on dilution with water, which caused fragmentation of the ghosts. Aldolase and glyceraldehyde phosphate dehydrogenase were classed as firmly bound; phosphoglycerate kinase was intermediate; the others were loosely bound. Triton X-100 increased the activities of aldolase, glyceraldehyde phosphate dehydrogenase, and phosphoglycerate kinase. The pH of the medium had little effect upon the firmly bound enzymes but it markedly affected the retention of hemoglobin and the activities of the loosely bound enzymes. The presence of Mg or Ca ions enhanced the retention of hemoglobin and the activity of lactate dehydrogenase and pyruvate kinase, with little effect on aldolase and glyceraldehyde phosphate dehydrogenase. Ghosts diluted in water disintegrated into fragments and tubules or vesicles; Mg or Ca at 1mm afforded protection against this. When ghosts were treated with Triton X-100 and adenosine triphosphate, they contracted to about one-seventh of their volume. The shrunken ghosts had lost a considerable proportion of their cholesterol and protein to the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号