首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
One hundred and fifty-nine Gram-negative strains isolated from refrigerated fish, taken from the Baltic Sea or Swedish inland waters, together with 32 reference strains of Shewanella, Pseudomonas, Aeromonas and Alcaligenes, were phenotypically classified using 124 unit characters. Data were processed by the Simple Matching (SSM) and Jaccard (SJ) coefficients, and unweighted pair group algorithm with arithmetic averages. Fourteen clusters were defined at the 75% SJ similarity level which correspond to the SSM level of 86%. SJ-based clusters containing field strains were designated Pseudomonas fragi (cluster 1; 31% of the field strains), Ps. lundensis (cluster 2; 2% of the field strains), Ps. fluorescens biovar III (cluster 4; 4% of the field strains), Ps. putida biovar A (cluster 5; 3% of the field strains), Ps. fluorescens/putida (clusters 3 and 6; 6% of the field strains), Psychrobacter (clusters 8 and 9; 3% of the field strains), Shewanella putrefaciens (clusters 10, 11, 12 and 13; 44% of the field strains) and Aer. sobria (cluster 14; 6% of the field strains, all isolated from fresh water fish). Each field strain represented the spoilage flora of refrigerated fish at a total aerobic count of about 10(8) cfu/g. Phenotypic characteristics of major clusters are given. The four S. putrefaciens clusters may be separated by key characteristics. Shewanella putrefaciens ATCC 8071T and reference strains from sources other than fish, did not group in any of the clusters. The mol % guanine + cytosine content was on average 47.6 for cluster 10, and 45.3 for cluster 13.  相似文献   

2.
3.
4.
L Gram 《Applied microbiology》1993,59(7):2197-2203
The antibacterial effects of 209 Pseudomonas strains isolated from spoiled iced fish and newly caught fish were assessed by screening target organisms in agar diffusion assays. One-third (67 strains) inhibited the growth of one or several of six target organisms (Escherichia coli, Shewanella putrefaciens, Aeromonas sobria, Pseudomonas fluorescens, Listeria monocytogenes, and Staphylococcus aureus), of which S. aureus and A. sobria were the most sensitive. The inhibitory action was most pronounced among the strains producing siderophores, and the presence of iron eliminated the antibacterial effect of two-thirds of the inhibitory strains. Siderophore-mediated competition for iron may explain the inhibitory activity of these strains. All but nine of the inhibiting strains were found to inhibit the growth of 38 psychrotrophic S. putrefaciens strains isolated from spoiling fish and fish products. Siderophore-containing Pseudomonas culture supernatants inhibited growth of S. putrefaciens, as did the addition of iron chelators (ethylenediamine dihydroxyphenylacetic acid [EDDHA]). In particular, Pseudomonas strains isolated from newly caught and spoiled Nile perch (Lates niloticus) inhibited S. putrefaciens. This suggests that microbial interaction (e.g., competition or antagonism) may influence the selection of a microflora for some chilled food products.  相似文献   

5.
Shewanella putrefaciens MR-1 can grow either aerobically or anaerobically at the expense of many different electron acceptors and is often found in abundance at redox interfaces in nature. Such redox interfaces are often characterized by very strong gradients of electron acceptors resulting from rapid microbial metabolism. The coincidence of S. putrefaciens abundance with environmental gradients prompted an examination of the ability of MR-1 to sense and respond to electron acceptor gradients in the laboratory. In these experiments, taxis to the majority of the electron acceptors that S. putrefaciens utilizes for anaerobic growth was seen. All anaerobic electron acceptor taxis was eliminated by the presence of oxygen, nitrate, nitrite, elemental sulfur, or dimethyl sulfoxide, even though taxis to the latter was very weak and nitrate and nitrite respiration was normal in the presence of dimethyl sulfoxide. Studies with respiratory mutants of MR-1 revealed that several electron acceptors that could not be used for anaerobic growth nevertheless elicited normal anaerobic taxis. Mutant M56, which was unable to respire nitrite, showed normal taxis to nitrite, as well as the inhibition of taxis to other electron acceptors by nitrite. These results indicate that electron acceptor taxis in S. putrefaciens does not conform to the paradigm established for Escherichia coli and several other bacteria. Carbon chemo-taxis was also unusual in this organism: of all carbon compounds tested, the only positive response observed was to formate under anaerobic conditions.  相似文献   

6.
7.
AIMS: To compare the number of attached Shewanella putrefaciens on stainless steel with different silver surfaces, thus evaluating whether silver surfaces could contribute to a higher hygienic status in the food industry. METHODS AND RESULTS: Bacterial adhesion to three types of silver surface (new silver, tarnished silver and sulphide-treated silver) was compared with adhesion to stainless steel (AISI 316) using the Malthus indirect conductance method to estimate the number of cfu cm(-2). The number of attached bacteria on new silver surfaces was lower than on steel for samples taken after 24 h. However, this was not statistically significant (P > 0.05). The numbers of attached bacteria were consistently lower when tarnished silver surfaces were compared with stainless steel and some, but not all, experiments showed statistical significance (P < 0.05). Treating new silver with sulphide to reproduce a tarnished silver surface did not result in a similar lowering of adhering cells when compared with steel (P > 0.05). CONCLUSIONS: New or tarnished silver surfaces caused a slight reduction in numbers of attached bacteria; however, the difference was only sometimes statistically significant. SIGNIFICANCE AND IMPACT OF THE STUDY: The lack of reproducibility in differences in numbers adhering to the different surfaces and lack of statistical significance between numbers of adhered viable bacteria do not indicate that the tested silver surfaces can be used to improve hygienic characteristics of surfaces in the food industry.  相似文献   

8.
Nitrate reduction to N2O was investigated in batch cultures of Shewanella putrefaciens MR-1, MR-4, and MR-7. All three strains reduced nitrate to nitrite to N2O, and this reduction was coupled to growth, whereas ammonium accumulation was very low (0 to 1 micromol liter-1). All S. putrefaciens isolates were also capable of reducing nitrate aerobically; under anaerobic conditions, nitrite levels were three- to sixfold higher than those found under oxic conditions. Nitrate reductase activities (31 to 60 micromol of nitrite min-1 mg of protein-1) detected in intact cells of S. putrefaciens were equal to or higher than those seen in Escherichia coli LE 392. Km values for nitrate reduction ranged from 12 mM for MR-1 to 1.3 mM for MR-4 with benzyl viologen as an artifical electron donor. Nitrate and nitrite reductase activities in cell-free preparations were demonstrated in native gels by using reduced benzyl viologen. Detergent treatment of crude and membrane extracts suggested that the nitrate reductases of MR-1 and MR-4 are membrane bound. When the nitrate reductase in MR-1 was partially purified, three subunits (90, 70, and 55 kDa) were detected in denaturing gels. The nitrite reductase of MR-1 is also membrane bound and appeared as a 60-kDa band in sodium dodecyl sulfate-polyacrylamide gels after partial purification.  相似文献   

9.
10.
Cytoplasmic inclusions surrounded by a bilayer membrane were seen in thin sections. negatively stained and freeze-fractured preparations of Shewanella putrefaciens. Cells harvested from the late exponential and early stationary phase showed a higher number of these vesicles than bacteria isolated from early exponential or late stationary phase. Chemical dyes for polyphosphate or poly-beta-hydroxybutyrate did not stain the material enclosed within these vesicles. Elemental analysis of the material indicated that the content was organic in nature and might be a protein. HPLC analysis of the material showed that it was probably not a carbon source, nor an electron acceptor used by S. putrefaciens.  相似文献   

11.
Nitrate reduction to N2O was investigated in batch cultures of Shewanella putrefaciens MR-1, MR-4, and MR-7. All three strains reduced nitrate to nitrite to N2O, and this reduction was coupled to growth, whereas ammonium accumulation was very low (0 to 1 micromol liter-1). All S. putrefaciens isolates were also capable of reducing nitrate aerobically; under anaerobic conditions, nitrite levels were three- to sixfold higher than those found under oxic conditions. Nitrate reductase activities (31 to 60 micromol of nitrite min-1 mg of protein-1) detected in intact cells of S. putrefaciens were equal to or higher than those seen in Escherichia coli LE 392. Km values for nitrate reduction ranged from 12 mM for MR-1 to 1.3 mM for MR-4 with benzyl viologen as an artifical electron donor. Nitrate and nitrite reductase activities in cell-free preparations were demonstrated in native gels by using reduced benzyl viologen. Detergent treatment of crude and membrane extracts suggested that the nitrate reductases of MR-1 and MR-4 are membrane bound. When the nitrate reductase in MR-1 was partially purified, three subunits (90, 70, and 55 kDa) were detected in denaturing gels. The nitrite reductase of MR-1 is also membrane bound and appeared as a 60-kDa band in sodium dodecyl sulfate-polyacrylamide gels after partial purification.  相似文献   

12.
Laboratory model systems were developed for studying Shewanella putrefaciens adhesion and biofilm formation under batch and flow conditions. S. putrefaciens plays a major role in food spoilage and may cause microbially induced corrosion on steel surfaces. S. putrefaciens bacteria suspended in buffer adhered readily to stainless steel surfaces. Maximum numbers of adherent bacteria per square centimeter were reached in 8 h at 25 degrees C and reflected the cell density in suspension. Numbers of adhering bacteria from a suspension containing 10(8) CFU/ml were much lower in a laminar flow system (modified Robbins device) (reaching 10(2) CFU/cm(2)) than in a batch system (reaching 10(7) CFU/cm(2)), and maximum numbers were reached after 24 h. When nutrients were supplied, S. putrefaciens grew in biofilms with layers of bacteria. The rate of biofilm formation and the thickness of the film were not dependent on the availability of carbohydrate (lactate or glucose) or on iron starvation. The number of S. putrefaciens bacteria on the surface was partly influenced by the presence of other bacteria (Pseudomonas fluorescens) which reduced the numbers of S. putrefaciens bacteria in the biofilm. Numbers of bacteria on the surface must be quantified to evaluate the influence of environmental factors on adhesion and biofilm formation. We used a combination of fluorescence microscopy (4',6'-diamidino-2-phenylindole staining and in situ hybridization, for mixed-culture studies), ultrasonic removal of bacteria from surfaces, and indirect conductometry and found this combination sufficient to quantify bacteria on surfaces.  相似文献   

13.
Laboratory model systems were developed for studying Shewanella putrefaciens adhesion and biofilm formation under batch and flow conditions. S. putrefaciens plays a major role in food spoilage and may cause microbially induced corrosion on steel surfaces. S. putrefaciens bacteria suspended in buffer adhered readily to stainless steel surfaces. Maximum numbers of adherent bacteria per square centimeter were reached in 8 h at 25°C and reflected the cell density in suspension. Numbers of adhering bacteria from a suspension containing 108 CFU/ml were much lower in a laminar flow system (modified Robbins device) (reaching 102 CFU/cm2) than in a batch system (reaching 107 CFU/cm2), and maximum numbers were reached after 24 h. When nutrients were supplied, S. putrefaciens grew in biofilms with layers of bacteria. The rate of biofilm formation and the thickness of the film were not dependent on the availability of carbohydrate (lactate or glucose) or on iron starvation. The number of S. putrefaciens bacteria on the surface was partly influenced by the presence of other bacteria (Pseudomonas fluorescens) which reduced the numbers of S. putrefaciens bacteria in the biofilm. Numbers of bacteria on the surface must be quantified to evaluate the influence of environmental factors on adhesion and biofilm formation. We used a combination of fluorescence microscopy (4′,6′-diamidino-2-phenylindole staining and in situ hybridization, for mixed-culture studies), ultrasonic removal of bacteria from surfaces, and indirect conductometry and found this combination sufficient to quantify bacteria on surfaces.  相似文献   

14.
Of 65 H2S-producing isolates from seven samples of ground beef, 64 were found to be Alteromonas putrefaciens. Isolates of Pseudomonas putrefaciens were not encountered. The mean guanine-plus-cytosine content of DNAs from 10 of the representative isolates, obtained from thermal denaturation determinations, was 46.5 ± 1.0 mol%, which is consistent with the designation A. putrefaciens.  相似文献   

15.
The inhibitory effects of nitrate (NO3-) and nitrite (NO2-) on dissimilatory iron (FE3+) reduction were examined in a series of electron acceptor competition experiments using Shewanella putrefaciens 200 as a model iron-reducing microorganism. S. putrefaciens 200 was found to express low-rate nitrate reductase, nitrite reductase, and ferrireductase activity after growth under highly aerobic conditions and greatly elevated rates of each reductase activity after growth under microaerobic conditions. The effects of NO3- and NO2- on the Fe3+ reduction activity of both aerobically and microaerobically grown cells appeared to follow a consistent pattern; in the presence of Fe3+ and either NO3- or NO2-, dissimilatory Fe3+ and nitrogen oxide reduction occurred simultaneously. Nitrogen oxide reduction was not affected by the presence of Fe3+, suggesting that S. putrefaciens 200 expressed a set of at least three physiologically distinct terminal reductases that served as electron donors to NO3-, NO2-, and Fe3+. However, Fe3+ reduction was partially inhibited by the presence of either NO3- or NO2-. An in situ ferrozine assay was used to distinguish the biological and chemical components of the observed inhibitory effects. Rate data indicated that neither NO3- nor NO2- acted as a chemical oxidant of bacterially produced Fe2+. In addition, the decrease in Fe3+ reduction activity observed in the presence of both NO3- and NO2- was identical to the decrease observed in the presence of NO2- alone. These results suggest that bacterially produced NO2- is responsible for inhibiting electron transport to Fe3+.  相似文献   

16.
50 Md conjugative plasmid, designated pM3, has been found in the cells from natural isolates of Pseudomonas sp M. The plasmid determines the resistance to tetracycline and streptomycin and is capable of conjugative transfer between the cells of Pseudomonas and Escherichia coli. The conjugative derivatives of pM3 deleted for 14 Md of molecular mass were isolated after acridine dyes treatment of cells harbouring plasmid pM3. The discovered plasmid was not shown to belong to IncP1 incompatibility group.  相似文献   

17.
N-Acylhomoserine lactones (AHLs) are used as quorum-sensing signal molecules by many gram-negative bacteria. We have reported that Shewanella sp. strain MIB015 degrades AHLs. In the present study, we cloned the aac gene from MIB015 by PCR with specific primers based on the aac gene in Shewanella oneidensis strain MR-1, which showed high homology with the known AHL-acylases. Escherichia coli expressing Aac showed high degrading activity of AHLs with long acyl chains. HPLC analysis revealed that Aac worked as AHL-acylase, which hydrolyzed the amide bond of AHL. In addition, expression of Aac in fish pathogen Vibrio anguillarum markedly reduced AHL production and biofilm formation. In conclusion, this study indicates that Aac might be effective in quenching quorum sensing of fish pathogens.  相似文献   

18.
Liu  Guo-Hong  Zhang  Qi  Narsing Rao  Manik Prabhu  Yang  Shang  Tang  Rong  Shi  Huai  Wang  Jie-Ping  Huang  Guan-Min  Liu  Bo  Zhou  Shun-Gui  Li  Wen-Jun 《Antonie van Leeuwenhoek》2021,114(12):2123-2131
Antonie van Leeuwenhoek - Three Gram-staining negative, facultatively anaerobic, rod-shaped and motile strains, FJAT-51800T, FJAT-52962T and FJAT-54481T were isolated from the sediment samples of...  相似文献   

19.
Aims: To study the antagonic affect of probiotic Pseudomonas M174 on the fish pathogen Flavobacterium psychrophilum. Methods and Results: The ability of Pseudomonas M174 to inhibit the growth of Fl. psychrophilum was examined in iron‐sufficient and ‐deficient media. Possible siderophore production was also investigated. Antagonistic activity was confirmed in disease challenge experiments using a rainbow trout (Oncorhynchus mykiss) model. Adhesion of Pseudomonas M174 to fish surfaces and its ability to stimulate innate immunity was also investigated in vivo. Pseudomonas M174 antagonized Fl. psychrophilum and produced siderophores in vitro. In challenge experiments with Fl. psychrophilum, fish fed with Pseudomonas M174 had lower levels of mortalities than the controls. It was possible to find Pseudomonas M174 in the intestinal content of these fish after feeding and bathing with the probiotic, but probiotic was obtained from the gills only after feeding. Respiratory burst activity was also found to be enhanced in the M174 fed fish. Conclusions: These results suggest that M174 is a potential probiotic against Fl. psychrophilum and has several modes of action. Significance and Impact of the Study: Probiotics are a promising alternative to the use of antibiotics in aquaculture and could be a more sustainable disease control method.  相似文献   

20.
The interaction between freshwater nonsulfur purple bacteria Rhodopseudomonas sp. UZ-25p (Uzon caldera, Kamchatka, Russia) and two kaolinite samples (Zhuravlinyi Log, Chelyabinsk oblast) was investigated. Alterations in the chemical composition of the minerals and solutions, the parameters of bacterial growth, and crystal morphology and mineralogy of the kaolinite samples indicated the interactions between all components of the system (minerals, water, growth medium, and bacteria). Bacteria removed some elements from the medium, used them for growth, and promoted their transition into the mineral exchange pool. In the presence of bacteria, kaolinite cation exchange capacity increased and saturation of kaolinites with bases occured. Partial biodegradation of kaolinites, accompanied by ordering of the crystalline structure of their lamellar phase, was the main factor responsible for the increase in cation exchange capacity. For the first time anoxygenic phototrophic bacteria were found to degrade kaolinite with formation of gibbsite. The theoretical and applied significance of the experimental results is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号