首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of estradiol-17 beta on the activity of pyruvate kinase from rat brain was investigated at initial stages of hormone administration. After estradiol treatment the rise of pyruvate kinase activity was found in the firmly bound synaptosomal fraction, whereas pyruvate kinase activity in soluble and weakly bound fractions has been reduced. The activation of the enzyme was also discovered after glutaraldehyde fixation on synaptosomal membranes. The possible mechanism of extragenomic estradiol action is discussed.  相似文献   

2.
The effect of the modification of synaptosomal membrane glycoproteins on the activity of adenylate cyclase was studied. It was found that the binding of concanavalin A to unmodified guinea pig cerebral cortex synaptosomal membrane did not change adenylate cyclase activity. Concanavalin A binding to synaptosomal membrane of hypoxic brain cortex resulted in no decrease of enzyme activity. The level of protein-bound sialic acid in these synaptosomal fractions was 20% lower than in the control. Treatment of synaptosomal membranes with neuraminidase resulted in a decrease of sialic acid content by about 70%, but it had no significant effect on adenylate cyclase activity. The modification with concanvalin A of sugar end groups exposed by neuraminidase treatment resulted in significant decrease of both basal and fluoride-stimulated adenylate cyclase activity. These results seem to indicate that some component of the adenylate cyclase complex of brain synaptosomal membranes is closely interacting with a carbohydrate-containing macromolecule on the cell surface.This work was supported by, the Polish Academy of Sciences within the project 10.4.  相似文献   

3.
The isotope labeling method was used to study the influence of phospholipases C of different origin and specificity on Ca2+ accumulation in rat brain synaptosomes. It was found that phospholipases C specific to phosphatidylinositides (PI) stimulate Ca2+ transport into synaptosomes, while non-specific phospholipase C, which hydrolyzes different membrane lipid fractions, decreases the Ca2+ content in synaptosomes. It is supposed that the stimulating effect of PI-specific phospholipases C is determined by the activation of PI metabolism, which results in an increase in the content of some PI metabolism products serving as Ca2+ ionophores in synaptosomal membranes. The inhibition of Ca2+ uptake by synaptosomes treated with non-specific phospholipase C is thought to result from partial disruption of synaptosomal membranes.  相似文献   

4.
Using fluorescent and EPR spin probing techniques, the effects of phospholipases A2, C and D on rat brain synaptosomal membranes were investigated. It was shown that treatment of synaptosomal membranes with phospholipases A2, C and D results in their depolarization and increase of their surface negative charge. In case of phospholipases A2 and C, these changes are also accompanied by a decrease of the microviscosity of the synaptosomal membrane lipid bilayer. alpha-Tocopherol protects synaptosomal membranes against the damaging action of phospholipases. The stabilization of synaptosomes by vitamin E consists in the reconstitution of the transmembrane potential and in an increased microviscosity of phospholipase-treated membranes. The stabilizing effect of alpha-tocopherol is due to the binding of phospholipid hydrolysis products rather than to the inhibition of phospholipases. The observed stabilization of synaptosomal membranes by alpha-tocopherol is interpreted as a feasible mechanism of biological effects of vitamin E on biological membranes.  相似文献   

5.
Brain membrane lipid fatty acid composition and consequently membrane fluidity change with increasing age. Intracellular fatty acid binding proteins (FABPs) such as heart H-FABP and the brain specific B-FABP, detected by immunoblotting of brain tissue, are thought to be involved in fatty acid uptake, metabolism, and differentiation in brain. Yet, almost nothing is known regarding the effect of age on the expression of the cytosolic fatty acid binding proteins (FABPs) or their content in brain subfractions. Electrophoresis and quantitative immunoblotting were used to examine the content of these FABPs in synaptosomes in brains from 4, 15, and 25 month old C57BL/6NNia male mice. Brain H-FABP and B-FABP were differentially expressed in mouse brain subcellular fractions. Brain H-FABP was highly concentrated in synaptosomal cytosol. The level of brain H-FABP in synaptosomes, synaptosomal cytosol, and intrasynaptosomal membranes was decreased 33, 35, and 43%, respectively, in 25 month old mice. B-FABP was detected in lower quantity than H-FABP. More important, B-FABP decreased in synaptosomes, synaptic plasma membranes, and synaptosomal cytosol from brains of 25 month old mice. In contrast to H-FABP, B-FABP was not detectable in the intrasynaptosomal membranes in any of the three age groups of mice. In conclusion, expression of both H-FABP and B-FABP was markedly reduced in aged mouse brain. Age differences in brain H-FABP and B-FABP levels in synaptosomal plasma membranes and synaptosomal cytosol may be important factors modulating neuronal differentiation and function.  相似文献   

6.
1. Fatty acid composition of five main phospholipids of vertebrate brain myelin and synaptosomal proteolipids and membranes was studied. 2. Higher content of monoenoic and lower content of saturated and polyenoic fatty acids was found to be characteristic of phospholipids from myelin and myelin proteolipids as compared to phospholipids from synaptosomal proteolipids and membranes of vertebrates (from fishes to mammalians). Fatty acid composition of phospholipids of proteolipid complexes and of the membranes, from which they were isolated, were found to be similar in various species studied. 3. Microviscosity was found to be higher in myelin as compared to synaptosomal membranes of frog Rana temporaria and in rabbit Lepus cuniculus. It appears to be due to the difference in proteolipid content and in lipid composition of myelin and synaptosomal membranes.  相似文献   

7.
In this study, we investigated the effect of cyclosporin A on the binding properties of the GABAA receptor in the hippocampus, known to be responsible for the induction of seizures, to clarify the mechanism of cyclosporin A-inhibited GABA neurotransmission in ovariectomized rats, as a climacterium model. The effects of single and subchronic treatments with cyclosporin A were examined on [3H]muscimol binding to hippocampal synaptosomal membranes in sham, ovariectomized, and estradiol/ovariectomized rats. A single treatment with cyclosporin A (40 mg/kg, i.p.) failed to change [3H]muscimol binding in the 3 groups, when compared with each corresponding vehicle-treated group. Subchronic treatment with cyclosporin A (40 mg/kg, i.p., once a day for 5 days) significantly decreased the amount of [3H]muscimol binding in ovariectomized rats. However, this inhibitory effect was not observed in sham or estradiol/ovariectomized rats. These results demonstrated that the binding activity of the GABAA receptor was decreased in ovariectomized rats after subchronic cyclosporin A treatment. This study supports the hypothesis that ovariectomy elevates the susceptibility to cyclosporin A-induced convulsions by accelerating the inhibitory actions of cyclosporin A on GABA neurotransmission in the hippocampus.  相似文献   

8.
A possibility of phosphatidylinositides catabolism initiation was revealed in the rat brain synaptosome membranes during in vitro action of estradiol. It was shown that appreciable enhancement of diacylglycerol yield was observed at already 5th second of initiation, which decreased then until the 30th second and kept the sufficiently high level. The yield of free arachidonic acid had also enhanced. Analogous dynamics of alteration was observed during the action of pharmacological as well as physiological concentrations of hormone.  相似文献   

9.
The modulation of rat brain microsomal and synaptosomal membrane lipid by diet fat was examined. Brain synaptosomal and microsomal membrane composition was compared for rats fed on diets containing either soya-bean oil (SBO), SBO plus choline, SBO lecithin, sunflower oil (SFO), chow or low-erucic acid rape-seed oil (LER) for 24 days. Cholesterol and phosphatidylcholine levels in both membranes were altered by diet. Diet fat also affected the microsomal content of sphingomyelin. Change in membrane phosphatidylcholine level was related to the relative balance of omega-6, omega-3 and monounsaturated fatty acids within the diets fed. The highest phosphatidylcholine levels appeared in membranes of animals fed on SBO lecithin and the lowest in those fed on LER. Microsomal membrane cholesterol and sphingomyelin content increased by feeding on SBO lecithin. In both synaptosomal and microsomal membranes a highly significant correlation was observed between membrane phosphatidylcholine and cholesterol content. The fatty acyl composition of phospholipids from both membranes also altered with diet and age. Alteration in fatty acid composition was observed in response to dietary levels of omega-6, omega-3 and monounsaturated fatty acids, but the unsaturation index of each phospholipid remained constant for all diet treatments. These changes in lipid composition suggest that dietary fat may be a significant modulator in vivo of the physicobiochemical properties of brain synaptosomal and microsomal membranes.  相似文献   

10.
Antioxidant Defense Systems in the Brains of Type II Diabetic Mice   总被引:2,自引:0,他引:2  
Abstract: The specific activities of superoxide dismutase, catalase, and glutathione S -transferase (μ subtype) were significantly lower in the brains of mice with type II diabetes than in the brains of control mice. On the other hand, the specific activity of glutathione peroxidase was unaltered. The concentration of vitamin E, but not that of total glutathione and ascorbate, was increased in the brains of the type II diabetic mice. The relative amount of polyunsaturated fatty acids (as determined with soybean lipoxygenase) was increased in whole brains and crude synaptosomal membranes of the type II diabetic mice. Endogenous levels of thiobarbituric acid-positive material were decreased in both whole brain homogenates and crude synaptosomal membranes of the db/db mice. Susceptibility of lipids within whole brain homogenates and crude synaptosomal membranes of mice with type II diabetes to peroxidation with iron/ascorbate was also markedly decreased compared with that of controls. Vitamin E is known to quench lipid peroxidation. Therefore, decreased lipid peroxidation in the type II mouse brain may be due to increased vitamin E content.  相似文献   

11.
Neurochemical studies were performed on synaptosomal membranes from cats with GM1 or GM2 gangliosidosis to examine possible mechanisms of neuronal dysfunction in these disorders. The basic hypothesis tested was that deficient ganglioside catabolism causes increased ganglioside content of synaptosomal plasma membrane which in turn disrupts normal function. Fluidity characteristics of synaptosomal membranes were examined using fluorescence polarization. Results showed markedly reduced membrane fluidity in both GM1 and GM2 gangliosidosis. These results were supported by a second study which revealed that isolated synaptosomal membranes of GM1 gangliosidosis cats had a 24-fold increase in total ganglioside content caused predominantly by excess GM1, a 2.3-fold increased cholesterol content, and a 1.4-fold increased phospholipid content. Finally, kinetic analysis of synaptosomal plasma membrane Na+,K+-ATPase from cats with GM1 gangliosidosis showed negligible differences in kinetic parameters compared with controls. Thus, the enzyme appeared protected from the global membrane changes in fluidity and composition. These observations provide evidence for a pathogenetic mechanism of neuronal dysfunction in the gangliosidoses while demonstrating protection of certain vital functional components, such as Na+,K+-ATPase.  相似文献   

12.
We have previously shown that peptide neurotensin inhibits cerebral cortex synaptosomal membrane Na+, K+-ATPase, an effect fully prevented by blockade of neurotensin NT1 receptor by antagonist SR 48692. The work was extended to analyze neurotensin effect on Na+, K+-ATPase activity present in other synaptosomal membranes and in CNS myelin and mitochondrial fractions. Results indicated that, besides inhibiting cerebral cortex synaptosomal membrane Na+, K+-ATPase, neurotensin likewise decreased enzyme activity in homologous striatal membranes as well as in a commercial preparation obtained from porcine cerebral cortex. However, the peptide failed to alter either Na+, K+-ATPase activity in cerebellar synaptosomal and myelin membranes or ATPase activity in mitochondrial preparations. Whenever an effect was recorded with the peptide, it was blocked by antagonist SR 48692, indicating the involvement of the high affinity neurotensin receptor (NT1), as well as supporting the contention that, through inhibition of ion transport at synaptic membrane level, neurotensin plays a regulatory role in neurotransmission.  相似文献   

13.
The ability of chronic ethanol treatment to alter CNS membrane lipids was tested. Adult male C57/BL6 mice were given a liquid diet containing ethanol for eight days. This regimen produced strong physical dependence as judged by withdrawal seizures, tremors and concomitant hypothermia. Analyses were performed on cholesterol, total phospholipid content and total phospholipid acyl composition of myelin, crude (P2), light and heavy synaptosomes as well as synaptosomal plasma membranes. Chronic ethanol treatment had no effect on total phospholipid levels nor phospholipid acyl composition in any of the above subcellular fractions. In ethanol dependent mice, significant increases in cholesterol content and cholesterol/ phospholipid ratios were observed only in synaptosomal plasma membranes.  相似文献   

14.
Changes in the activity of (Na+, K+)-ATPase of synaptosomal membranes induced by exogenous gangliosides were studied. Depending on the ganglioside-protein ratio, the enzyme activity was finally reduced to 40% when the ratio, was about 1. By analysis of the reaction kinetics the effect was characterized as a noncompetitive inhibition. Moreover the ganglioside effect, was clearly dependent on the incubation temperature. Since exogenous gangliosides thereby caused a shifting in the optimum temperature of (Na+, K+)-ATPase, the effect is discussed in terms of changes of the membrane properties. In preincubation experiments it was revealed that the interaction of the glycolipids with synaptosomal membranes itself was temperature dependent and enhanced by ATP. It is suggested that ganglioside micelles might have been incorporated by the membranes in a way comparable to a fusion process.  相似文献   

15.
Using fluorescent and EPR spin probing techniques, the changes in the physico-chemical properties of rat brain synaptosomal membranes induced by phospholipase A2 were studied. It was shown that treatment of synaptosomal membranes with phospholipase A2 leads to their depolarization, increases their surface negative potential and decreases the microviscosity of the membrane lipid bilayer. The observed changes in the physicochemical properties of synaptosomal membranes induced by phospholipase A2 are discussed in terms of a possible regulatory role of lipids in the transmembrane chemical signal transfer.  相似文献   

16.
The aim of the present experiments was to study the effects of the neurotransmitters acetylcholine, noradrenaline, 5-hydroxytryptamine, and dopamine on the Na+,K+-ATPase of rat brain synaptosomal fractions. It is shown that dopamine at low concentrations specifically inhibits the Na+,K+-ATPase of synaptic membranes from the brain regions rich in dopaminergic endings, but has no effect on the synaptosomal Na+,K+-ATPase from the other parts of brain. Acetylcholine and noradrenaline have similar specific effects on Na+,K+-ATPase from cholinergic and adrenergic synaptosomes. The Na+,K+-ATPase of synaptic membranes from the different brain regions, characterised by different distributions of cholinergic, adrenergic, and 5-hydroxytryptaminergic endings, show different reactions with neurotransmitters. These data indicate a functional significance of the effects of the neurotransmitters on the synaptosomal Na+,K+-ATPase.  相似文献   

17.
1. The phospholipid composition of the main proteolipid complexes of the nervous system was studied in myelin and synaptosomal membranes from brains of representatives of various vertebrate classes. 2. The relative content of acid phospholipids was much higher in proteolipid complexes from myelin and synaptosomal membranes of all vertebrates studied as compared to their content in the initial lipid extract (28-80% and 11-20% of total phospholipid content, respectively). 3. The relative content of acid phospholipids in proteolipid complexes of myelin membranes was much lower in brain of fishes and amphibia as compared to higher vertebrates. 4. The main acid phospholipids of proteolipid complexes was phosphatidylserine, phosphatidic acid being characteristic for myelin proteolipids and diphosphatidyl glycerol for synaptosomal proteolipids of all vertebrates studied.  相似文献   

18.
NO synthase activity was found in the plasma (synaptosomal) membrane particles isolated from the homogenate of adult rat brain (without cerebellum) under conditions preventing the protease attack and formation of reactive oxygen species. The NO synthase discovered exhibited some properties of a neuronal constitutive integral membrane enzyme and was inhibited by N-nitro-L-arginine. NO synthase activity decreased when bilirubin entered the synaptosomal membrane in vitro. Bilirubin caused the shift of the transition temperature in the temperature dependence of NO synthase activity in Arrhenius plots. The incorporation of bilirubin into synaptosomal membranes resulted in an increase in the apparent activation energy for NO synthase within a temperature range of 10-30 degrees C. The membrane NO synthase was susceptible to the photodynamic effect of membrane-bound bilirubin molecules. Monomeric human serum albumin without organophilic ligands exerted a protective effect on NO synthase in bilirubin-containing membrane particles.  相似文献   

19.
It has been previously shown that local anesthetics inhibit the total Ca2+, Mg2(+)-ATPase activity of synaptosomal plasma membranes. We have carried out kinetic studies to quantify the effects of these drugs on the different Ca2(+)-dependent and Mg2(+)-dependent ATPase activities of these membranes. As a result we have found that this inhibition is not altered by washing the membranes with EDTA or EGTA. We have also found that the Ca2(+)-dependent ATPase activity is not significantly inhibited in the concentration range of these local anesthetics and under the experimental conditions used in this study. The inhibition of the Mg2(+)-dependent ATPase activities of these membranes was found to be of a noncompetitive type with respect to the substrate ATP-Mg2+, did not significantly shift the Ca2+ dependence of the Ca2+, Mg2(+)-ATPase activity, and occurred in a concentration range of local anesthetics that does not significantly alter the order parameter (fluidity) of these membranes. Modulation of this activity by the changes of the membrane potential that are associated with the adsorption of local anesthetics on the synaptosomal plasma membrane is unlikely, on the basis of the weak effect of membrane potential changes on the Ca2+,Mg2(+)-ATPase activity. It is suggested that the local anesthetics lidocaine and dibucaine inhibit the Ca2+, Mg2(+)-ATPase of the synaptosomal plasma membrane by disruption of the lipid annulus.  相似文献   

20.
The effect of hypoglycemia on the uptake of [1-14C]arachidonate and [1-14C]oleate into a synaptosomal and microsomal glycerophospholipids was investigated. In the presence of ATP, Mg2+ and CoA, rat brain synaptosomes and micorsomes catalyze the transfer of arachidonate and oleatc into glycerophospholipids. Arachidonate was mainly incorporated into phosphatidylinositol (PI) and phosphatidylcholine (PC), whereas oleate was incorporated into phosphatidylcholine and phosphatidylethanolamine (PE).Hypoglycemia was produced by intraperitoneal injection of 10 or 100 units of crystalline insulin per kg body weight. Two hours after injection the blood glucose level decreased to 10–20 mg%. The content of brain phospholipids was slightly decreased but the change was not statistically significant. The level of free fatty acids (FFA) was increased. More pronounced and reproducible changes were found when hypoglycemia was produced by injection of 100 units of insulin per/kg body weight. Changes in brain cortex were similar to those observed in microsomes and synaptosomes. Hypoglycemia affected the incorporation of arachidonic acid into glycerophospholipids of brain membranes. Uptake of [1-14C]arachidonate was decreased selectively by 50% (into phosphatidic acid /PA/) when hypogiycemia was produced by injection of 10 units of insulin per kg body weight. The Higher dose of insulin 100 units per kg body weight produced a 20% inhibition of arachidonate incorporation into synaptosomal PI and a 13% decrease of incorporation into microsomal phosphatidylcholine. Incorporation of [1-14C]oleate into membrane phospholipids was not changed by hypoglycemic insult. It is proposed that the disturbances in fatty acid level, particularly arachidonate, and decreased uptake of arachidonic acid by synaptosomal glycerophospholipids may be responsible for alteration of membrane function and changes of synaptic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号