首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Groundnut rosette and its assistor virus   总被引:1,自引:0,他引:1  
Chlorotic rosette from Malawi (isolate CR1), passed through Stylosanthes gracilis and S. juncea, was not subsequently transmissible from groundnuts (Arachis hypogaea) by Aphis craccivora or A. gossypii, but with S. mucronata transmissibility was occasionally regained after a period of time. Aphid transmissibility was similarly lost after passage of two isolates (a chlorotic rosette from Rhodesia, CR2, and a green rosette from Nigeria, GR) through soybean (Soja max) and after manual inoculation to groundnuts. Groundnut plants that remained symptomless after exposure to rosette infection by aphids often contained a virus that restored aphid transmissibility when introduced into groundnuts containing the vectorless virus from that isolate. Groundnut rosette disease therefore consists of a symptom-inducing virus that we call groundnut rosette virus (GRV) and a symptomless assistor virus (GRAV) that must be present for aphid transmission. The interactions between the GRV and GRAV of chlorotic and green rosette, and their transmission by different vector races, are described.  相似文献   

2.
A disease characterised by severely stunted plants with small dark green leaves was found in groundnut (Arachis hypogaea) in sandy soils in Punjab State, India. The disease occurred in patches in the field and reappeared in the same positions in succeeding groundnut crops. Plants infected early did not produce mature pods. Seeds sown in soil collected from infected fields produced plants with typical disease symptoms. Phaseolus vulgaris cv. Local and Chenopodium quinoa were found to be good diagnostic hosts. The disease was shown to be caused by a rod-shaped virus c. 24 nm in diameter with predominant particle lengths of c. 249 and 184 nm when stained in uranyl acetate. The virus, named Indian peanut clump virus (IPCV), resembled peanut clump virus (PCV) reported from W. Africa in symptomatology on groundnuts, particle morphology and soil-borne nature. However, it is not serologically related to two W. African PCV isolates tested, or to tobacco rattle (PRN and CAM strains) or pea early browning virus (Dutch isolate) in microprecipitin, enzyme linked immunosorbent assay and immunosorbent electron microscopy tests.  相似文献   

3.
Groundnut plants with symptoms of rosette disease contain groundnut rosette virus (GRV), but GRV is transmitted by Aphis craccivora only from plants that also contain groundnut rosette assistor virus (GRAV). Two main forms of rosette disease are recognised, ‘chlorotic rosette’ and ‘green rosette’. GRV cultures invariably possess a satellite RNA and this is the major cause of rosette symptoms: satellite-free isolates derived from GRV cultures from Nigerian plants with chlorotic or green rosette, or from Malawian plants with chlorotic rosette, induced no symptoms, or only transient mild mottle or interveinal yellowing, in groundnut. When the satellite RNA species from GRV cultures from Nigerian green or Malawian chlorotic rosette were reintroduced into the three satellite-free isolates in homologous and heterologous combinations, the ability to induce rosette symptoms was restored and the type of rosette induced was that of the cultures from which the satellite RNA was derived. Thus different forms of the satellite are responsible for the different forms of rosette disease. Other forms of the satellite induce only mild chlorosis or mottle symptoms in groundnut. Individual plants may contain more than one form of the satellite, and variations in their relative predominance are suggested to account for the variable symptoms (ranging from overall yellowing to mosaic) seen in some plants graft-inoculated with chlorotic rosette.  相似文献   

4.
Twelve isolates of beet necrotic yellow vein virus, agent of rhizomania in sugar beet, have been obtained from five European countries and the USA. The isolates were cloned and multiplied in the local lesion host Chenopodium quinoa. By ELISA, a close serological relationship was observed among all the isolates. The isolates differed, however, in the number of viral RNA species present (2, 3 or 4) and in the lengths of RNAs 3 and 4, the two smallest RNAs. A comparison of the symptoms induced by the different isolates in C. quinoa revealed a correlation between the presence of a full-length RNA 3 (about 1850 nucleotides) and the appearance of severe chlorotic local lesions.  相似文献   

5.
Six blackberry or hybrid berry cultivars and 19 raspberry cultivars were assessed for their infectibility with, and sensitivity to, graft inoculation with 10 distinct viruses found infecting Rubus in the UK. Cultivars were grafted with each of, two isolates of the pollen borne raspberry bushy dwarf virus (RBDV), five aphid borne viruses: black raspberry necrosis, raspberry leaf mottle (RLMV), raspberry leaf spot (RLSV), rubus yellow net and raspberry vein chlorosis (RVCV); and isolates of the nematode transmitted nepoviruses, arabis mosaic, raspberry ringspot, strawberry latent ringspot and tomato black ring. All tested cultivars were infectible with a resistance breaking isolate of RBDV but only about half of that number with the Scottish type isolate of the virus. The raspberry cvs Autumn Bliss, and occasionally Glen Garry and Glen Prosen, developed leaf yellowing symptoms following infection with RBDV, but none of the other infected cultivars showed obvious leaf symptoms when kept in a heated glasshouse during the growing season. All tested cultivars were infectible with each of the four viruses transmitted in nature by the aphid, Amphorophora idaei. Most were infected symptomlessly, but seven cultivars developed severe leaf spotting symptoms due to infection with RLMV or RLSV. All but one of the raspberry cultivars were infectible with RVCV, which is transmitted in nature by the aphid Aphis idaei, and almost all infected plants developed leaf symptoms; only one of the hybrid berry or blackberry cultivars tested was infected with RVCV. In tests with the four nepoviruses, all tested cultivars, except Tummelberry, were infectible with at least one or more of these viruses. However, cultivars responded differently to challenge inoculation with different isolates of individual nepoviruses. Several cultivars developed chlorotic leaf mottling following infection with some nepovirus isolates. The implications of these results for virus control are discussed in the light of the changing pattern of virus and virus vector incidence in the UK.  相似文献   

6.
Arabis mosaic virus (AMV) and prunus necrotic ringspot virus (PNRSV), separately or together, caused in field-grown roses the range of symptoms recognised as rose mosaic disease. PNRSV infection alone generally induced chlorotic line patterns, ring-spots or mottles in the leaves at some time during the growing season; AMV plus PNRSV normally caused chlorotic vein-banding. However, during prolonged periods of high temperatures (c. 21 °C or more) vein banding occurred in some roses infected only with PNRSV. Isolates of PNRSV from rose had particles which were similar in shape, protein mol. wt, density and sedimentation coefficients to previously described isolates of PNRSV from cherry, plum and rose; all were cherry serotypes. In graft-inoculated roses, apple serotypes of PNRSV induced stunting and chlorosis, puckering and distortion of leaves, which closely resembled symptoms associated with rose mosaic in the USA and chlorotic mottle rose mosaic in New Zealand. To avoid possible confusion in using the name rose mosaic it is suggested that the virus(es) present in roses should be named.  相似文献   

7.
Sharka caused by plum pox virus (PPV) is a disease spread in France since 1970, and causing severe damages essentially on apricot but also on plums and peach. Cherry is generally considered as not infected by PPV. Experimental transmissions by chip budding or aphids allowed to show that 3 isolates of PPV can multiply inside three cherry rootstocks (P. Mahaleb cv.‘SL 64′, P. avium cv.‘F 12-1′, and P. avium*P. pseudocerasus cv. ‘Colt') (Tables 1 and 2). But generally, the virus remained localized to the infection site and disappeared quickly (Table 3). Typical symptoms of chlorotic ringspot or vein clearing are also limited to the leaves probed by the aphids. The fact that no translocation was detected is discussed.  相似文献   

8.
Hop chlorotic disease was first described in England in 1930, but it has since been seldom seen and its etiology has remained unknown. In 1983 a patch of plants with the disease occurred in a large area of hops (Humulus lupulus) cv. Bramling Cross planted at Yalding, Kent in 1967. All plants in a rectangular area enclosing the disease outbreak were infected with hop mosaic, hop latent and prunus necrotic ringspot viruses; the diseased plants were additionally infected with arabis mosaic virus (AMV). The disease was also associated with seed-transmitted AMV, and was induced in hop seedlings inoculated with partially purified preparations of AMV originating from chlorotic disease-affected hops prepared from Chenopodium quinoa. The disease appears to be caused by AMV, but AMV isolates from hops with chlorotic disease were serologically indistinguishable from AMV isolates from hops with symptoms of bare-bine and/or nettlehead and showed similar pathogenicity in diagnostic hosts. The basis of the difference between isolates in their pathogenicity in hop remains unknown.  相似文献   

9.
Eight isolates of Cucumber mosaic virus (CMV) isolated from seven different host species were tested for their virulence on potato cv. Desirée. Three isolates caused a systemic infection, of which one isolate from Asiatic lily (CMV-P26) and one from cucumber (CMV-J) appeared to be highly virulent, in contrast to the third isolate (CMV-M) that originated from cucumber and caused mild symptoms only. These three isolates were transmitted to 26 additional potato cultivars by mechanical inoculation in a greenhouse. All cultivars were infected with at least one CMV isolate and developed local chlorotic symptoms, but only 17 cultivars (including Desiree) developed primary systemic symptoms including necrosis, mosaic and/or malformation of leaves. Furthermore, in only five cultivars (including Desiree) CMV was transmitted to tubers and was subsequently detected in plants of the first and second vegetative progeny, the secondary symptoms of these plants being severe. The observed phenotypic responses of potatoes to CMV were not associated with the maturity type (early or late) or resistance to other viruses. Results of this study indicate a high level of biological variability among CMV isolates and that infection in potato depends on CMV isolate and potato cultivar.  相似文献   

10.
By integrating next‐generation sequencing (NGS), bioinformatics, electron microscopy and conventional molecular biology tools, a new virus infecting kiwifruit vines has been identified and characterized. Being associated with double‐membrane‐bound bodies in infected tissues and having a genome composed of RNA segments, each one containing a single open reading frame in negative polarity, this virus shows the typical features of members of the genus Emaravirus. Five genomic RNA segments were identified. Additional molecular signatures in the viral RNAs and in the proteins they encode, together with data from phylogenetic analyses, support the proposal of creating a new species in the genus Emaravirus to classify the novel virus, which is tentatively named Actinidia chlorotic ringspot‐associated virus (AcCRaV). Bioassays showed that AcCRaV is mechanically transmissible to Nicotiana benthamiana plants which, in turn, may develop chlorotic spots and ringspots. Field surveys disclosed the presence of AcCRaV in four different species of kiwifruit vines in five different provinces of central and western China, and support the association of the novel virus with symptoms of leaf chlorotic ringspots in Actinidia. Data on the molecular features of small RNAs of 21–24 nucleotides, derived from AcCRaV RNAs targeted by host RNA silencing mechanisms, are also reported, and possible molecular pathways involved in their biogenesis are discussed.  相似文献   

11.
12.
A new virus disease of bougainvillea occurred in Taiwan and proved to be caused by a Badnavirus, which is similar to the pathogen tentatively named ‘Bougainvillea spectabilis chlorotic vein‐banding virus (BsCVBV)’ in Brazil according to pathological and molecular results. In electron microscopic observations, typical bacilliform virions measuring 130–158 × 27–42 nm were observed in infected bougainvillea tissues. The transmission tests demonstrated that the virus could be easily transmitted among different bougainvillea cultivars by bud grafting but not by mechanical inoculation. BsCVBV showed different pathogenicity to various bougainvillea cultivars in our inoculation tests. The Taipei‐Red and Thimma cultivars showed the apparent foliar symptoms of chlorosis, chlorotic spots, wrinkling and leaf‐distortion; the original species of Bougainvillea glabra produced chlorotic spots and vein clearing on leaves without wrinkling or leaf distortion; both ‘Mrs. Eva Mauve Variegata’ and Hati Gadis showed mild mottling and faint spots of leaves; Helen Johnson was tolerant to BsCVBV. Our devised PCR‐based assays demonstrated that BsCVBV could replicate and persistently survived in all tested bougainvillea cultivars used in this study although it induced different symptoms in them. The BsCVBV‐1 primer pair devised from our cloned BsCVBV‐specific DNA fragments proved to be efficient in the PCR assays for the rapid and specific detection of BsCVBV in Taiwan, and this PCR‐based method is helpful in the quarantine, inspection and ecological studies for BsCVBV in Taiwan.  相似文献   

13.
Apple chlorotic leafspot virus (CLSV) was detected in 27 of 109 hawthorn and three of 67 blackthorn plants sampled in various parts of Britain. The CLSV isolates possessed similar properties to those isolated from other rosaceous species but differed in the severity of symptoms they induced in woody indicators. No seed or aphid transmission of CLSV was detected. Prunus necrotic ringspot (PNRV) and prune dwarf (PDV) viruses were detected in four and three respectively of 67 blackthorn plants. The PNRV and PDV isolates were serologically closely related to isolates from cherry. Arabis mosaic virus was detected in one blackthorn plant, but plum pox virus was not found in any of the tested plants.  相似文献   

14.
Occurrence and Genome Analysis of Cucurbit chlorotic yellows virus in Iran   总被引:1,自引:0,他引:1  
In 2011 and 2012, several cucurbit‐growing regions of Iran were surveyed and samples with symptoms similar to those induced by Cucurbit chlorotic yellows virus (CCYV) were collected. The pathogen was transmitted to cucumber and melon under greenhouse conditions by whiteflies (Bemisia tabaci). RT‐PCR using designed CCYV‐specific primer pair (CCYV‐F/CCYV‐R) resulted in amplification of the predicted size DNA fragment (870 bp) for the coat protein (CP) gene in samples collected from Boushehr, Eyvanakay and Varamin. Nucleotide sequences of the CP of the three Iranian CCYV isolates were compared with five CCYV isolates obtained from GenBank and analysed. Phylogenetically, all CCYV isolates clustered in two groups; Group I is composed of five non‐Iranian isolates from China, Lebanon, Japan, Sudan and Taiwan, and the three Iranian isolates formed Group 2. Among Iranian isolates, the Eyvanakay isolate clustered in a distinct clade with the Boushehr and Varamin isolates. A phylogenetic tree based on amino acid identity of CP showed that CCYV was closely related to Lettuce chlorosis virus (LCV), Bean yellow disorder virus (BnYDV) and Cucurbit yellow stunting disorder virus (CYSDV). This is the first report of CCYV in Iran.  相似文献   

15.
Some Malawian cultures of groundnut rosette virus (GRV) give rise to variants that, although still causing symptoms of the chlorotic type of rosette in groundnut, induce brilliant yellow blotch mosaic symptoms, instead of the usual veinal chlorosis and mild mottle, in Nicotiana benthamiana. One such isolate (YB) induced the formation in infected plants of a 0.9 kbp dsRNA having extensive sequence homology with molecules of similar size in other naturally occurring isolates of GRV. These dsRNA molecules were shown to be double-stranded forms of single-stranded satellite RNA molecules. Experiments in which the satellite was removed from and restored to isolate YB, or exchanged with those from other GRV isolates, showed that it carries the determinant for yellow blotch mosaic symptoms. Plants inoculated with the 0.9 kbp dsRNA (denatured or undenatured) developed yellow blotch mosaic even when the satellite-free GRV helper was not inoculated until 11 days later. The satellite RNA is therefore a very stable molecule. Prior infection of N. benthamiana with a GRV isolate containing a normal form of the satellite protected against expression of yellow blotch mosaic symptoms when the plants were later inoculated with isolate YB, whereas prior infection with satellite-free isolates did not. This provides a simple method of determining whether a GRV isolate has an associated satellite RNA. The YB satellite seems to be a newly recognised variant additional to those known to cause the chlorotic, green and other forms of groundnut rosette disease.  相似文献   

16.
Three hundred and ninety‐four sweet potato accessions from Latin America and East Africa were screened by polymerase chain reaction (PCR) for the presence of begomoviruses, and 46 were found to be positive. All were symptomless in sweet potato and generated leaf curling and/or chlorosis in Ipomoea setosa. The five most divergent isolates, based on complete genome sequences, were used to study interactions with Sweet potato chlorotic stunt virus (SPCSV), known to cause synergistic diseases with other viruses. Co‐infections led to increased titres of begomoviruses and decreased titres of SPCSV in all cases, although the extent of the changes varied notably between begomovirus isolates. Symptoms of leaf curling only developed temporarily in combination with isolate StV1 and coincided with the presence of the highest begomovirus concentrations in the plant. Small interfering RNA (siRNA) sequence analysis revealed that co‐infection of SPCSV with isolate StV1 led to relatively increased siRNA targeting of the central part of the SPCSV genome and a reduction in targeting of the genomic ends, but no changes to the targeting of StV1 relative to single infection of either virus. These changes were not observed in the interaction between SPCSV and the RNA virus Sweet potato feathery mottle virus (genus Potyvirus), implying specific effects of begomoviruses on RNA silencing of SPCSV in dually infected plants. Infection in RNase3‐expressing transgenic plants showed that this protein was sufficient to mediate this synergistic interaction with DNA viruses, similar to RNA viruses, but exposed distinct effects on RNA silencing when RNase3 was expressed from its native virus, or constitutively from a transgene, despite a similar pathogenic outcome.  相似文献   

17.
18.
A survey in Senegal and Guinea Conakry established the presence and incidence of cassava mosaic virus disease (CMD) in both countries. CMD occurred in all the fields surveyed, although its incidence was higher in Senegal (83%) than in Guinea (64%). Populations of the whitefly vector, Bemisia tabaci, were low in both countries averaging 1.7 adults per shoot in Guinea and 3.2 in Senegal. Most infections were attributed to the use of infected cuttings, 86 and 83% in Senegal and Guinea, respectively, and there was no evidence of rapid current‐season, whitefly‐borne infection at any of the sampled locations. Disease severity was generally low in the two countries and averaged 2.5 in Guinea and 2.3 in Senegal. No plants with unusually severe CMD symptoms characteristic of the CMD pandemic in East and Central Africa were observed. Restriction fragment length polymorphism (RFLP)‐based diagnostics revealed that African cassava mosaic virus (ACMV) is exclusively associated with CMD in both the countries. Neither East African cassava mosaic virus (EACMV), nor the recombinant Uganda variant (EACMV‐UG2) was detected in any sample. These survey data indicate that CMD could be effectively controlled in both countries by phytosanitation, involving the use of CMD‐free planting material and the removal of diseased plants.  相似文献   

19.
Iris yellow spot virus (IYSV) was first observed in sweet onions in Georgia (USA) in 2003 in the Vidalia region. The virus had been reported in the onion‐growing regions in western USA several years before being detected in Georgia in the east. Although symptoms were observed on onions in Peru several years earlier, the presence of IYSV was not confirmed in Peru until after the virus was detected in Georgia. We characterized nine isolates of IYSV recovered from sweet onions in both Georgia (four isolates) and Peru (five isolates) by sequencing the nucleocapsid (N) gene and compared those sequences with sequences available in GenBank. Sequence divergence between IYSV isolates from Georgia and Peru was low with 1.1%, and comparisons with IYSV isolates from other regions showed divergence of up to 11.4%. Bootstrap analysis indicated with a high degree of confidence that the Georgia and Peruvian isolates fell into the same clade and were different from known isolates from western USA that fell into sister clades. The high degree of similarity between Georgia and Peruvian isolates suggests that gene flow occurred from Peru into Georgia.  相似文献   

20.
Begomoviruses are one of the major pathogens in tomato crops worldwide. In Venezuela, six begomovirus species have been described infecting tomato: Potato yellow mosaic virus (PYMV), Euphorbia mosaic Venezuela virus (EuMVV), Merremia mosaic virus (MeMV), Tomato chlorotic leaf distortion virus (ToCLDV), Tomato yellow margin leaf curl virus (TYMLCV) and Tomato yellow leaf curl virus (TYLCV). In this study, the occurrence of these viruses was analysed by PCR in 338 tomato plants exhibiting virus‐like symptoms. Sixty‐three per cent of the plants were positive at least to one of the begomoviruses tested. PYMV and TYLCV were the most frequent viruses showing 39.6 and 23.7% occurrence, respectively. Phylogenetic analyses revealed two groups of PYMV isolates from several Caribbean Basin countries. The first group clustered isolates from several countries, including Venezuela, and the second group clustered only Colombian isolates. Due to the high prevalence of PYMV and TYLCV in Venezuela, it is suggested that the surveillance and control strategies currently applied in the country should be focused on these two begomoviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号