首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Operator metrics are explicity designed to measure evolutionary distances from nucleic acid sequences when substitution rates differ greatly among the organisms being compared, or when substitutions have been extensive. Unlike lengths calculated by the distance matrix and parsimony methods, in which substitutions in one branch of a tree can alter the measured length of another branch, lengths determined by operator metrics are not affected by substitutions outside the branch.In the method, lengths (operator metrics) corresponding to each of the branches of an unrooted tree are calculated. The metric length of a branch reconstructs the number of (transversion) differences between sequences at a tip and a node (or between nodes) of a tree. The theory is general and is fundamentally independent of differences in substitution rates among the organisms being compared. Mathematically, the independence has been obtained becuase the metrics are eigen vectors of fundamental equations which describe the evolution of all unrooted trees.Even under conditions when both the distance matrix method or a simple parsimony length method are show to indicate lengths than are an order of magnitude too large or too small, the operator metrics are accurate. Examples, using data calculated with evolutionary rates and branchings designed to confuse the measurement of branch lengths and to camouflage the topology of the true tree, demonstrate the validity of operator metrics. The method is robust. Operator metric distances are easy to calculated, can be extended to any number of taxa, and provide a statistical estimate of their variances.The utility of the method is demonstrated by using it to analyze the origins and evolutionary of chloroplasts, mitochondria, and eubacteria.  相似文献   

2.
We present a model of amino acid sequence evolution based on a hidden Markov model that extends to transmembrane proteins previous methods that incorporate protein structural information into phylogenetics. Our model aims to give a better understanding of processes of molecular evolution and to extract structural information from multiple alignments of transmembrane sequences and use such information to improve phylogenetic analyses. This should be of value in phylogenetic studies of transmembrane proteins: for example, mitochondrial proteins have acquired a special importance in phylogenetics and are mostly transmembrane proteins. The improvement in fit to example data sets of our new model relative to less complex models of amino acid sequence evolution is statistically tested. To further illustrate the potential utility of our method, phylogeny estimation is performed on primate CCR5 receptor sequences, sequences of l and m subunits of the light reaction center in purple bacteria, guinea pig sequences with respect to lagomorph and rodent sequences of calcitonin receptor and K-substance receptor, and cetacean sequences of cytochrome b.  相似文献   

3.
C. S. Lee 《Chromosoma》1981,83(3):367-379
The satellite II DNA of Drosophila nasutoides is a highly diverged repetitive DNA, showing about 17% base changes between repeat units (Cordeiro-Stone and Lee, 1976). This DNA is cleaved by four different restriction enzymes to produce multimeric fragmentation patterns, indicating that their restriction sites are regularly arranged. Moreover, all four enzymes produce identical fragment lengths, the size of a monomer being 96 base pairs. Such multimeric patterns are expected for a diverged repetitive DNA, since many restriction sequences could have undergone changes during sequence divergence. Further restriction analyses of this DNA by double digestions and cloning reveal that there are three different sequences in satellite II DNA with respect to the presence and the arrangement of various restriction sites (Fig. 7). As an example, one sequence contains many EcoRI sites and fewer Hinfl sites (20% of EcoRI sites), which are arranged regularly. These observations suggest that satellite II DNA of D. nasutoides might have evolved through different modes of sequence divergence.  相似文献   

4.
1. Procedures for multiple alignment of sequence data, subsequent phylogenetic inference, and testing of the trees derived are presented. 2. The assumptions underlying different approaches and the extent to which they are valid are discussed.  相似文献   

5.
Paleobotany can contribute much to evolutionary scenario-building. Here, we use two case studies — the Devono-Carboniferous vascular plant radiation and the largely coeval evolution of heterosporous from homosporous life histories — to examine the interface between phylogeny and ecology. Our observations challenge some tenets of the neo-Darwinian orthodoxy, notably the assumed role of competition mediated selection as an active driving force, rather than a passive filter, of evolution.

The Devono-Carboniferous class-level radiation of vascular plants was prompted by attainment of a complexity threshold and delimited the morphological envelope that enclosed an apparently fractal pattern of subsequent, lower level radiations. The contrast of low speciation rates with exceptionally high rates of phenotypic divergence in the Devonian suggests a non-adaptive “novelty” radiation, perhaps reflecting saltational evolution via “hopeful monsters”. Successive lower level radiations were more constrained by the ecological hierarchy that resulted from progressive niche differentiation and saturation. This in turn reflected increased speciation rates, thereby completing a well defined negative feedback loop in the coevolution of phenotypic and ecological differentiation.

Heterosporous life histories evolved independently in at least ten lineages. Heterospory allows the sporophyte to impose, via differential development, a single fixed gender on each gametophyte prior to spore release. Although the resulting life history is less flexible than homospory, which on recent evidence includes a range of subtle and sophisticated strategies, it promotes the sporophyte as the primary target for selection. Gametophytes effectively perform the role of gametes and are released into the environment prior to fertilization, thus favoring aquatic—amphibious habitats resistant to occupation by homosporous pteridophytes; terrestrial heterospory requires apomixis. Although the profound iteration of heterospory implies a strong adaptive advantage, repeated gradual evolution via inferior intermediates exhibiting exosporous heterospory seems unlikely.

Seed-plant success reflects economic efficiency and the subsequent evolution of effective pollination syndromes, rather than integumentation of the ovule. Major radiations of heterosporous lineages and subsequently of seed-plants required perturbation of pre-existing communities by extrinsic environmental changes rather than genuinely competitive displacement. This typical manifestation of “home-field advantage” further emphasizes the intimate relationship between phylogeny and ecology, and allows us to make predictions that can be tested by further paleobotanical research.  相似文献   


6.
Homologous recombination is restricted to sequences of low divergence. This is attributed to the mismatch repairing system (MMR), which does not allow recombination between sequences that are highly divergent. This acts as a safeguard against recombination between nonhomologous sequences that could result in genome imbalance. Here, we report recombination between maternal and paternal mitochondrial genomes of the sea mussel, whose sequences differ by >20%. We propose that the strict maternal inheritance of the animal mitochondrial DNA and the ensuing homoplasmy has relieved the MMR system of the animal mitochondrion from the pressure to tolerate recombination only among sequences with a high degree of similarity.  相似文献   

7.
8.
Zhou Y  Wang R  Li L  Xia X  Sun Z 《Journal of molecular biology》2006,359(4):1150-1159
Identifying potential protein interactions is of great importance in understanding the topologies of cellular networks, which is much needed and valued in current systematic biological studies. The development of our computational methods to predict protein-protein interactions have been spurred on by the massive sequencing efforts of the genomic revolution. Among these methods is phylogenetic profiling, which assumes that proteins under similar evolutionary pressures with similar phylogenetic profiles might be functionally related. Here, we introduce a method for inferring functional linkages between proteins from their evolutionary scenarios. The term evolutionary scenario refers to a series of events that occurred in speciation over time, which can be reconstructed given a phylogenetic profile and a species tree. Common evolutionary pressures on two proteins can then be inferred by comparing their evolutionary scenarios, which is a direct indication of their functional linkage. This scenario method has proven to have better performance compared with the classical phylogenetic profile method, when applied to the same test set. In addition, predicted results of the two methods are found to be fairly different, suggesting the possibility of merging them in order to achieve a better performance. We analyzed the influence of the topology of the phylogenetic tree on the performance of this method, and found it to be robust to perturbations in the topology of the tree. However, if a completely random tree is incorporated, performance will decline significantly. The evolutionary scenario method was used for inferring functional linkages in 67 species, and 40,006 linkages were predicted. We examine our prediction for budding yeast and find that almost all predicted linkages are supported by further evidence.  相似文献   

9.
The rate of adaptive evolution depends on the rate at which beneficial mutations are introduced into a population and the fitness effects of those mutations. The rate of beneficial mutations and their expected fitness effects is often difficult to empirically quantify. As these 2 parameters determine the pace of evolutionary change in a population, the dynamics of adaptive evolution may enable inference of their values. Copy number variants (CNVs) are a pervasive source of heritable variation that can facilitate rapid adaptive evolution. Previously, we developed a locus-specific fluorescent CNV reporter to quantify CNV dynamics in evolving populations maintained in nutrient-limiting conditions using chemostats. Here, we use CNV adaptation dynamics to estimate the rate at which beneficial CNVs are introduced through de novo mutation and their fitness effects using simulation-based likelihood–free inference approaches. We tested the suitability of 2 evolutionary models: a standard Wright–Fisher model and a chemostat model. We evaluated 2 likelihood-free inference algorithms: the well-established Approximate Bayesian Computation with Sequential Monte Carlo (ABC-SMC) algorithm, and the recently developed Neural Posterior Estimation (NPE) algorithm, which applies an artificial neural network to directly estimate the posterior distribution. By systematically evaluating the suitability of different inference methods and models, we show that NPE has several advantages over ABC-SMC and that a Wright–Fisher evolutionary model suffices in most cases. Using our validated inference framework, we estimate the CNV formation rate at the GAP1 locus in the yeast Saccharomyces cerevisiae to be 10−4.7 to 10−4 CNVs per cell division and a fitness coefficient of 0.04 to 0.1 per generation for GAP1 CNVs in glutamine-limited chemostats. We experimentally validated our inference-based estimates using 2 distinct experimental methods—barcode lineage tracking and pairwise fitness assays—which provide independent confirmation of the accuracy of our approach. Our results are consistent with a beneficial CNV supply rate that is 10-fold greater than the estimated rates of beneficial single-nucleotide mutations, explaining the outsized importance of CNVs in rapid adaptive evolution. More generally, our study demonstrates the utility of novel neural network–based likelihood–free inference methods for inferring the rates and effects of evolutionary processes from empirical data with possible applications ranging from tumor to viral evolution.

This study shows that simulation-based inference of evolutionary dynamics using neural networks can yield parameter values for fitness and mutation rate that are difficult to determine experimentally, including those of copy number variants (CNVs) during experimental adaptive evolution of yeast.  相似文献   

10.
Summary NTP-motif, a consensus sequence previously shown to be characteristic of numerous NTP-utilizing enzymes, was identified in nonstructural proteins of several groups of positive-strand RNA viruses. These groups include picorna-, alpha-, and coronaviruses infecting animals and como-, poty-, tobamo-, tricorna-, hordei-, and furoviruses of plants, totalling 21 viruses. It has been demonstrated that the viral NTP-motif-containing proteins constitute three distinct families, the sequences within each family being similar to each other at a statistically highly significant level. A lower, but still valid similarity has also been revealed between the families. An overall alignment has been generated, which includes several highly conserved sequence stretches. The two most prominent of the latter contain the socalled A and B sites of the NTP-motif, with four of the five invariant amino acid residues observed within these sequences. These observations, taken together with the results of comparative analysis of the positions occupied by respective proteins (domains) in viral multidomain proteins, suggest that all the NTP-motif-containing proteins of positive-strand RNA viruses are homologous, constituting a highly diverged monophyletic group. In this group the A and B sites of the NTP-motif are the most conserved sequences and, by inference, should play the principal role in the functioning of the proteins. A hypothesis is proposed that all these proteins posses NTP-binding capacity and possibly NTPase activity, performing some NTP-dependent function in viral RNA replication. The importance of phylogenetic analysis for the assessment of the significance of the occurrence of the NTP-motif (and of sequence motifs of this sort in general) in proteins is emphasized.  相似文献   

11.
Mucine-like glycoproteins have been studied by structural indication. Textures of these compounds have been described. Possibility for using mucines as matrix structures in microcrystallographic method of analysis of complex multicomponent systems has been discussed.  相似文献   

12.
Bracovirus gene products are highly divergent from insect proteins   总被引:1,自引:0,他引:1  
Recently, several polydnavirus (PDV) genomes have been completely sequenced. The dsDNA circles enclosed in virus particles and injected by wasps into caterpillars appear to mainly encode virulence factors potentially involved in altering host immunity and/or development, thereby allowing the survival of the parasitoid larvae within the host tissues. Parasitoid wasps generally inject virulence factors produced in the venom gland. As PDV genomes are inherited vertically by wasps through a proviral form, wasp virulence genes may have been transferred to this chromosomal form, leading to their incorporation into virus particles. Indeed, many gene products from Cotesia congregata bracovirus (CcBV), such as PTPs, IkappaB-like, and cystatins, contain protein domains conserved in metazoans. Surprisingly however, CcBV virulence gene products are not more closely related to insect proteins than to human proteins. To determine whether the distance between CcBV and insect proteins is a specific feature of BV proteins or simply reflects a general high divergence of parasitoid wasp products, which might be due to parasitic lifestyle, we have analyzed the sequences of wasp genes obtained from a cDNA library. Wasp sequences having a high similarity with Apis mellifera genes involved in a variety of biological functions could be identified indicating that the high level of divergence observed for BV products is a hallmark of these viral proteins. We discuss how this divergence might be explained in the context of the current hypotheses on the origin and evolution of wasp-bracovirus associations.  相似文献   

13.
Genomic diversity and past population histories are key considerations in the fields of conservation and evolutionary biology. In this issue of Molecular Ecology Resources, Prasad et al. (Mol. Ecol. Resour., 2021) examine how the quality and phylogenetic divergence of reference genomes influences the outcomes of downstream analyses such as diversity and demographic history inference. Using the beluga whale and rowi kiwi as examples (Figure 1), they systematically estimate heterozygosity, runs of homozygosity (ROH), and demographic history (PSMC) using reference genomes of varying quality and phylogenetic divergence from the target species. They show that demographic history analyses are impacted by phylogenetic distance, although this is not pronounced until divergence exceeds 3% from the target species. Similarly, their results imply that heterozygosity estimates are dependent on phylogenetic distance and the method used to perform the estimates, and ROHs are potentially undetectable when a nonconspecific reference is used. This investigation into the role of divergence and quality of reference genomes highlights the impact and potential biases generated by genome selection on downstream analyses, and provides a possible alternative in cross-species scaffolding in instances where a conspecific reference genome is not available.  相似文献   

14.
Calcium-binding proteins regulate ion metabolism and vital signalling pathways in all living organisms. Our aim is to rationalize the molecular basis of their function by studying their evolution using computational biology techniques. Phylogenetic analysis is of primary importance for classifying cognate orthologs; profile hidden Markov models (HMM) of individual subfamilies discern functionally relevant sites by conservation probability analysis; and 3-dimensional structures display the integral protein in context. The major classifications of calcium-binding proteins, viz. EF-hand, C2 and ANX, exhibit structural diversity in their HMM fingerprints at the subfamily level, with functional consequences for protein conformation, exposure of receptor interaction sites and/or binding to membrane phospholipids. Calmodulin, S100 and annexin families were characterized in Petromyzon marinus (sea lamprey) to document genome duplication and gene creation events during the key evolutionary transition to primitive vertebrates. Novel annexins from diverse organisms revealed calcium-binding domains with accessory structural features that define their unique molecular fingerprints, protein interactivity and functional specificity. These include the first single-domain, bacterial annexin in Cytophaga hutchinsonii, the 21 tetrad annexins from the unicellular protist Giardia intestinalis, an ancestor to land plant annexins from the green alga Ostreococcus lucimarinus, invertebrate octad annexins and a critical polymorphism in human ANXA7. Receptor docking models supported the hypothesis of a potential interaction between annexin and C2 domains as a propitious mechanism for ensuring membrane translocation during signal transduction.  相似文献   

15.
The distribution of freshwater taxa is a good biogeographic model to study pattern and process of vicariance and dispersal. The subfamily Leuciscinae (Cyprinidae, Teleostei) consists of many species distributed widely in Eurasia and North America. Leuciscinae have been divided into two phyletic groups, leuciscin and phoxinin. The phylogenetic relationships between major clades within the subfamily are poorly understood, largely because of the overwhelming diversity of the group. The origin of the Far Eastern phoxinin is an interesting question regarding the evolutionary history of Leuciscinae. Here we present phylogenetic analysis of 31 species of Leuciscinae and outgroups based on complete mitochondrial genome sequences to clarify the phylogenetic relationships and to infer the evolutionary history of the subfamily.  相似文献   

16.
Membrane proteins function in the diverse environment of the lipid bilayer. Experimental evidence suggests that some lipid molecules bind tightly to specific sites on the membrane protein surface. These lipid molecules often act as co-factors and play important functional roles. In this study, we have assessed the evolutionary selection pressure experienced at lipid-binding sites in a set of α-helical and β-barrel membrane proteins using posterior probability analysis of the ratio of synonymous vs. nonsynonymous substitutions (ω-ratio). We have also carried out a geometric analysis of the membrane protein structures to identify residues in close contact with co-crystallized lipids. We found that residues forming cholesterol-binding sites in both β(2)-adrenergic receptor and Na(+)-K(+)-ATPase exhibit strong conservation, which can be characterized by an expanded cholesterol consensus motif for GPCRs. Our results suggest the functional importance of aromatic stacking interactions and interhelical hydrogen bonds in facilitating protein-cholesterol interactions, which is now reflected in the expanded motif. We also find that residues forming the cardiolipin-binding site in formate dehydrogenase-N γ-subunit and the phosphatidylglycerol binding site in KcsA are under strong purifying selection pressure. Although the lipopolysaccharide (LPS)-binding site in ferric hydroxamate uptake receptor (FhuA) is only weakly conserved, we show using a statistical mechanical model that LPS binds to the least stable FhuA β-strand and protects it from the bulk lipid. Our results suggest that specific lipid binding may be a general mechanism employed by β-barrel membrane proteins to stabilize weakly stable regions. Overall, we find that the residues forming specific lipid binding sites on the surfaces of membrane proteins often experience strong purifying selection pressure.  相似文献   

17.
Ceplitis A  Su Y  Lascoux M 《Molecular ecology》2005,14(14):4221-4233
Besides showing an extraordinary degree of phenotypic variability, Capsella bursa-pastoris (Brassicaceae) is also one of the world's most common plant species and a serious weed in many countries. We have employed a coalescent-based Bayesian analysis of chloroplast microsatellite data to infer demographic and evolutionary parameters of this species. Two different demographic models applied to data from seven chloroplast microsatellite loci among 59 accessions show that the effective population size of C. bursa-pastoris is very small indicating a rapid expansion of the species, a result that is in accordance with fossil and historical data. Against this background, analysis of flowering time variation among accessions suggests that ecotypic differentiation in flowering time has occurred recently in the species' history. Finally, our results also indicate that mononucleotide repeat loci in the chloroplast genome can deteriorate in relatively short periods of evolutionary time.  相似文献   

18.

Background  

Extant placental mammals are divided into four major clades (Laurasiatheria, Supraprimates, Xenarthra and Afrotheria). Given that Afrotheria is generally thought to root the eutherian tree in phylogenetic analysis of large nuclear gene data sets, the study of the organization of the genomes of afrotherian species provides new insights into the dynamics of mammalian chromosomal evolution. Here we test if there are chromosomal bands with a high tendency to break and reorganize in Afrotheria, and by analyzing the expression of aphidicolin-induced common fragile sites in three afrotherian species, whether these are coincidental with recognized evolutionary breakpoints.  相似文献   

19.
20.
We have characterized two related cDNAs (RCI2A and RCI2B) corresponding to genes from Arabidopsis thaliana, the expression of which is transiently induced by low, nonfreezing temperatures. RCI2A and RCI2B encode small (54 amino acids), highly hydrophobic proteins that bear two potential transmembrane domains. They show similarity to proteins encoded by genes from barley (Hordeum vulgare L.) and wheatgrass (Lophophyrum elongatum) that are regulated by different stress conditions. Their high level of sequence homology (78%) and their genomic location in a single restriction fragment suggest that both genes originated as a result of a tandem duplication. However, their regulatory sequences have diverged enough to confer on them different expression patterns. Like most of the cold-inducible plant genes characterized, the expression of RCI2A and RCI2B is also promoted by abscisic acid (ABA) and dehydration but is not a general response to stress conditions, since it is not induced by salt stress or by anaerobiosis. Furthermore, low temperatures are able to induce RCI2A and RCI2B expression in ABA-deficient and -insensitive genetic backgrounds, indicating that both ABA-dependent and -independent pathways regulate the low-temperature responsiveness of these two genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号