首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aflatoxins comprise a group of polyketide-derived carcinogenic mycotoxins produced byAspergillus parasiticus andAspergillus flavus. By transformation with a disruption construct, pXX, we disrupted the aflatoxin pathway inA. parasiticus SRRC 2043, resulting in the inability of this strain to produce aflatoxin intermediates as well as a major yellow pigment in the transformants. The disruption was attributed to a single-crossover, homologous integration event between pXX and the recipientA. parasiticus genome at a specific locus, designatedpksA. Sequence analysis suggest thatpksA is a homolog of theAspergillus nidulans wA gene, a polyketide synthase gene involved in conidial wall pigment biosynthesis. The conservedβ-ketoacyl synthase, acyltransferase and acyl carrier-protein domains were present in the deduced amino acid sequence of thepksA product. Noβ-ketoacyl reductase and enoyl reductase domains were found, suggesting thatpksA does not encode catalytic activities for processingβ-carbon similar to those required for long chain fatty acid synthesis. ThepksA gene is located in the aflatoxin pathway gene cluster and is linked to thenor-1 gene, an aflatoxin pathway gene required for converting norsolorinic acid to averantin. These two genes are divergently transcribed from a 1.5 kb intergenic region. We propose thatpksA is a polyketide synthase gene required for the early steps of aflatoxin biosynthesis.  相似文献   

2.
Important staple foods (peanuts, maize and rice) are susceptible to contamination by aflatoxin (AF)-producing fungi such as Aspergillus flavus. The objective of this study was to explore non-aflatoxin-producing (atoxigenic) A. flavus strains as biocontrol agents for the control of AFs. In the current study, a total of 724 A. flavus strains were isolated from different regions of China. Polyphasic approaches were utilized for species identification. Non-aflatoxin and non-cyclopiazonic acid (CPA)-producing strains were further screened for aflatoxin B1 (AFB1) biosynthesis pathway gene clusters using a PCR assay. Strains lacking an amplicon for the regulatory gene aflR were then analyzed for the presence of the other 28 biosynthetic genes. Only 229 (32%) of the A. flavus strains were found to be atoxigenic. Smaller (S) sclerotial phenotypes were dominant (51%) compared to large (L, 34%) and non-sclerotial (NS, 15%) phenotypes. Among the atoxigenic strains, 24 strains were PCR-negative for the fas-1 and aflJ genes. Sixteen (67%) atoxigenic A. flavus strains were PCRnegative for 10 or more of the biosynthetic genes. Altogether, 18 new PCR product patterns were observed, indicating great diversity in the AFB1 biosynthesis pathway. The current study demonstrates that many atoxigenic A. flavus strains can be isolated from different regions of China. In the future laboratory as well as field based studies are recommended to test these atoxigenic strains as biocontrol agents for aflatoxin contamination.  相似文献   

3.
The report presents a rapid, inexpensive and simple method for monitoring indels with influence on aflatoxin biosynthesis within Aspergillus flavus populations. PCR primers were developed for 32 markers spaced approximately every 5 kb from 20 kb proximal to the aflatoxin biosynthesis gene cluster to the telomere repeat. This region includes gene clusters required for biosynthesis of aflatoxins and cyclopiazonic acid; the resulting data were named cluster amplification patterns (CAPs). CAP markers are amplified in four multiplex PCRs, greatly reducing the cost and time to monitor indels within this region across populations. The method also provides a practical tool for characterizing intraspecific variability in A. flavus not captured with other methods.

Significance and Impact of the Study

Aflatoxins, potent naturally‐occurring carcinogens, cause significant agricultural problems. The most effective method for preventing contamination of crops with aflatoxins is through use of atoxigenic strains of Aspergillus flavus to alter the population structure of this species and reduce incidences of aflatoxin producers. Cluster amplification pattern (CAP) is a rapid multiplex PCR method for identifying and monitoring indels associated with atoxigenicity in A. flavus. Compared to previous techniques, the reported method allows for increased resolution, reduced cost, and greater speed in monitoring the stability of atoxigenic strains, incidences of indel mediated atoxigenicity and the structure of A. flavus populations.  相似文献   

4.
Aspergillus flavus isolates produce only aflatoxins B1 and B2, while Aspergillus parasiticus and Aspergillus nomius produce aflatoxins B1, B2, G1, and G2. Sequence comparison of the aflatoxin biosynthesis pathway gene cluster upstream from the polyketide synthase gene, pksA, revealed that A. flavus isolates are missing portions of genes (cypA and norB) predicted to encode, respectively, a cytochrome P450 monooxygenase and an aryl alcohol dehydrogenase. Insertional disruption of cypA in A. parasiticus yielded transformants that lack the ability to produce G aflatoxins but not B aflatoxins. The enzyme encoded by cypA has highest amino acid identity to Gibberella zeae Tri4 (38%), a P450 monooxygenase previously shown to be involved in trichodiene epoxidation. The substrate for CypA may be an intermediate formed by oxidative cleavage of the A ring of O-methylsterigmatocystin by OrdA, the P450 monooxygenase required for formation of aflatoxins B1 and B2.  相似文献   

5.
6.
Biosynthesis of the toxic and carcinogenic aflatoxins by the fungus Aspergillus flavus is a complicated process involving more that 27 enzymes and regulatory factors encoded by a clustered group of genes. Previous studies found that three enzymes, encoded by verA, ver-1, and aflY, are required for conversion of versicolorin A (VA), to demethylsterigmatocystin. We now show that a fourth enzyme, encoded by the previously uncharacterized gene, aflX (ordB), is also required for this conversion. A homolog of this gene, stcQ, is present in the A. nidulans sterigmatocystin (ST) biosynthesis cluster. Disruption of aflX in Aspergillus flavus gave transformants that accumulated ~4-fold more VA and fourfold less aflatoxin than the untransformed strain. Southern and Northern blot analyses confirmed that aflX was the only gene disrupted in these transformants. Feeding ST or O-methylsterigmatocystin, but not VA or earlier precursor metabolites, restored normal levels of AF production. The protein encoded by aflX is predicted to have domains typical of an NADH-dependent oxidoreductase. It has 27% amino acid identity to a protein encoded by the aflatoxin cluster gene, aflO (avfA). Some of domains in the protein are similar to those of epoxide hydrolases.  相似文献   

7.
An enzyme-linked Immunosorbent assay (ELISA) was used to monitor a total of 153 fungi in theAspergillus flavus group, Including 130A. flavus, 15A. parasiticus and 8A. tamarii, for their ability to produce aflatoxins (AFs) and cyclopiazonic acid (CPA) in a mycologlcal broth-sucrose-yeast extract medium. Of 15A. parasiticus isolates, ten produced AFs In a range of 12.4 to 89.3 μg/vial (average 56.9 μg/vial); two isolates produced only trace amounts of AFs and three isolates produced none at all. Production of CPA was not demonstrated in anyA. parasiticus isolate. On the other hand, all A. tamarii isolates produced only CPA with a range of 310 to 1100 gmg/vial. Fifteen percent (14.6%) of theA. flavus isolates (19/130) produced more than 500 μg CPA/vial, but yielded no or little AF (less than 0.1 μg/vial). About 22.3% ofA. flavus (29/130) that produced less than 500 μg of CPA also yielded little or no aflatoxin. MostA. flavus isolates (44.6%) produced both CPA (50 to 300 μg/vial) and AFs (10 to 40 μg/vial). About 9.2% of theA. flavus are low CPA producers (less than 100 μg/vial) but yielded higher amounts of AFs. A small percentage (12/130 or 9.2%) of A. flavus isolates produced neither CPA nor aflatoxin. Excluding the isolates that produced neither AFs nor CPA, there is a negative correlation between the production of CPA and AFs by most A.flavus isolates. Data obtained from ELISA for the production of CPA were consistent with TLC results. Thus, the ELISA method for CPA and AFB could be applied to the screening of toxigenic fungi. Data on the simultaneous production of both toxins by a large percentage of the toxigenicA. flavus isolates suggest that there is a potential health hazard for co-existence of both toxins in foods and feeds.  相似文献   

8.
Caleosins are a small family of calcium-binding proteins endowed with peroxygenase activity in plants. Caleosin-like genes are present in fungi; however, their functions have not been reported yet. In this work, we identify a plant caleosin-like protein in Aspergillus flavus that is highly expressed during the early stages of spore germination. A recombinant purified 32-kDa caleosin-like protein supported peroxygenase activities, including co-oxidation reactions and reduction of polyunsaturated fatty acid hydroperoxides. Deletion of the caleosin gene prevented fungal development. Alternatively, silencing of the gene led to the increased accumulation of endogenous polyunsaturated fatty acid hydroperoxides and antioxidant activities but to a reduction of fungal growth and conidium formation. Two key genes of the aflatoxin biosynthesis pathway, aflR and aflD, were downregulated in the strains in which A. flavus PXG (AfPXG) was silenced, leading to reduced aflatoxin B1 production in vitro. Application of caleosin/peroxygenase-derived oxylipins restored the wild-type phenotype in the strains in which AfPXG was silenced. PXG-deficient A. flavus strains were severely compromised in their capacity to infect maize seeds and to produce aflatoxin. Our results uncover a new branch of the fungal oxylipin pathway and may lead to the development of novel targets for controlling fungal disease.  相似文献   

9.
Aflatoxins are polyketide-derived, toxic, and carcinogenic secondary metabolites produced primarily by two fungal species, Aspergillus flavus and A. parasiticus, on crops such as corn, peanuts, cottonseed, and treenuts. Regulatory guidelines issued by the U.S. Food and Drug Administration (FDA) prevent sale of commodities if contamination by these toxins exceeds certain levels. The biosynthesis of these toxins has been extensively studied. About 15 stable precursors have been identified. The genes involved in encoding the proteins required for the oxidative and regulatory steps in the biosynthesis are clustered in a 70 kb portion of chromosome 3 in the A. flavus genome. With the characterization of the gene cluster, new insights into the cellular processes that govern the genes involved in aflatoxin biosynthesis have been revealed, but the signaling processes that turn on aflatoxin biosynthesis during fungal contamination of crops are still not well understood. New molecular technologies, such as gene microarray analyses, quantitative polymerase chain reaction (PCR), and chromatin immunoprecipitation are being used to understand how physiological stress, environmental and soil conditions, receptivity of the plant, and fungal virulence lead to episodic outbreaks of aflatoxin contamination in certain commercially important crops. With this fundamental understanding, we will be better able to design improved non-aflatoxigenic biocompetitive Aspergillus strains and develop inhibitors of aflatoxin production (native to affected crops or otherwise) amenable to agricultural application for enhancing host-resistance against fungal invasion or toxin production. Comparisons of aflatoxin-producing species with other fungal species that retain some of the genes required for aflatoxin formation is expected to provide insight into the evolution of the aflatoxin gene cluster, and its role in fungal physiology. Therefore, information on how and why the fungus makes the toxin will be valuable for developing an effective and lasting strategy for control of aflatoxin contamination.  相似文献   

10.
11.
The fluG gene is a member of a family of genes required for conidiation and sterigmatocystin production in Aspergillus nidulans. We examined the role of the Aspergillus flavus fluG orthologue in asexual development and aflatoxin biosynthesis. Deletion of fluG in A. flavus yielded strains with an approximately 3-fold reduction in conidiation but a 30-fold increase in sclerotial formation when grown on potato dextrose agar in the dark. The concurrent developmental changes suggest that A. flavus FluG exerts opposite effects on a mutual signaling pathway for both processes. The altered conidial development was in part attributable to delayed expression of brlA, a gene controlling conidiophore formation. Unlike the loss of sterigmatocystin production by A. nidulans fluG deletion strains, aflatoxin biosynthesis was not affected by the fluG deletion in A. flavus. In A. nidulans, FluG was recently found to be involved in the formation of dehydroaustinol, a component of a diffusible signal of conidiation. Coculturing experiments did not show a similar diffusible meroterpenoid secondary metabolite produced by A. flavus. These results suggest that the function of fluG and the signaling pathways related to conidiation are different in the two related aspergilli.  相似文献   

12.
Aspergillus flavus strains were isolated frompeanut fields of Liaoning, Shandong, Hubei and Guangdong Provinces in China, and identified through phenotypic and molecular approaches. Of the 323 A. flavus strains isolated, 76 strains did not produce aflatoxins detectable by UPLC. The incidence of atoxigenic A. flavus strains decreased with increase in temperature and increased with increase in latitude in different geographical locations. Amplification of all the aflatoxin genes in the aflatoxin gene cluster in the atoxigenic isolates showed that there were 25 deletion patterns (A–Y), with 22 deletion patterns identified for the first time. Most of the atoxigenic A. flavus isolates with gene deletions (97%) had deletions in at least one of the four genes (aflT, nor-1, aflR, and hypB), indicating that these four genes could be targeted for rapid identification of atoxigenic strains. The atoxigenic isolates with gene deletions, especially the isolates with large deletions, are potential candidates for aflatoxin control.  相似文献   

13.
Aspergillus niger or Aspergillus tamarii when grown as mixed cultures with toxigenic A. flavus inhibits biosynthesis of aflatoxin by A. flavus, owing primarily to its ability to produce inhibitors of aflatoxin biosynthesis and to their ability to degrade aflatoxin. Gluconic acid partly prevents aflatoxin production. The other factors such as changes in pH of the medium and the effect on the growth of A. flavus have no role in imparting capabilities to these cultures to inhibit aflatoxin production by A. flavus.  相似文献   

14.
Aflatoxins, mainly produced by Aspergillus flavus and A. parasiticus, are a group of potent mycotoxins with carcinogenic, hepatotoxic, and immunosuppressive properties. Many studies have been devoted to investigating their biosynthesis mechanism since they were discovered half a century ago. 5-Azacytidine (5-AC), a derivative of the nucleoside cytidine and an inactivator of DNA methyltransferase, is widely used for studies in epigenetics and cancer biology, and has also been used for studying secondary metabolism in fungi. In this study, 5-AC was applied to investigate its effect on the development and aflatoxin biosynthesis of A. flavus. The results indicate that 5-AC inhibits the ability to produce aflatoxin and also causes a fluffy aconidial phenotype. Further studies revealed that 5-AC affects gene expression of A. flavus to a limited degree, and the unique homolog of DNA methyltransferase gene (DmtA) expressed constitutively during different developmental stages of A. flavus irrespective of 5-AC. This work may provide some basic data to elucidate the role of 5-AC in aflatoxin biosynthesis and the development of A. flavus.  相似文献   

15.
Aflatoxins comprise a group of polyketide-derived carcinogenic mycotoxins produced byAspergillus parasiticus andAspergillus flavus. By transformation with a disruption construct, pXX, we disrupted the aflatoxin pathway inA. parasiticus SRRC 2043, resulting in the inability of this strain to produce aflatoxin intermediates as well as a major yellow pigment in the transformants. The disruption was attributed to a single-crossover, homologous integration event between pXX and the recipientA. parasiticus genome at a specific locus, designatedpksA. Sequence analysis suggest thatpksA is a homolog of theAspergillus nidulans wA gene, a polyketide synthase gene involved in conidial wall pigment biosynthesis. The conserved-ketoacyl synthase, acyltransferase and acyl carrier-protein domains were present in the deduced amino acid sequence of thepksA product. No-ketoacyl reductase and enoyl reductase domains were found, suggesting thatpksA does not encode catalytic activities for processing-carbon similar to those required for long chain fatty acid synthesis. ThepksA gene is located in the aflatoxin pathway gene cluster and is linked to thenor-1 gene, an aflatoxin pathway gene required for converting norsolorinic acid to averantin. These two genes are divergently transcribed from a 1.5 kb intergenic region. We propose thatpksA is a polyketide synthase gene required for the early steps of aflatoxin biosynthesis.  相似文献   

16.
17.
It was initially shown that gallic acid, from hydrolysable tannins in the pelliele of walnut kernels, dramatically inhibits biosynthesis of aflatoxin byAspergillus flavus. The mechanism of this inhibition was found to take place upstream from the gene cluster, including the regulatory gene,aflR, involved in aflatoxin biosynthesis. Additional research using other antioxidant phenolics showed similar antiaflatoxigenic activity to gallic acid. Treatment ofA. flavus withtert-butyl hydroperoxide resulted in an almost doubling of aflatoxin biosynthesis compared to untreated samples. Thus, antioxidative response systems are potentially useful molecular targets for control ofA. flavus. A high throughput screening system was developed using yeast,Saccharomyces cerevisiae, as a model fungus. This screening provided an avenue to quickly identify fungal genes that were vulnerable to treatment by phenolic compounds. The assay also provided a means to quickly assess effects of combinations of phenolics and certain fungicides affecting mitochondrial respiration. For example, theS. cerevisiae sod2† mutant was highly sensitive to treatment by certain phenolics and strobilurins/antimycin A, fungicides which inhibit complex III of the mitochondrial respiratory chain. Verification of stress to this system in the target fungus,A. flavus, was shown through complementation analysis, wherein the mitochondrial superoxide dismutase (Mn-SOD) gene (sodA) ofA. flavus in the ortholog mutant,sod2†, ofS. cerevisiae, relieved phenolic-induced stress. Mitochondrial antioxidative stress systems play an important role in fungal response to antifungals. Combined treatment of fungi with phenolics and inhibitors of mitochondrial respiration can effectively suppress growth ofA. flavus in a synergistic fashion.  相似文献   

18.
We show here that oxidative stress is involved in both sclerotial differentiation (SD) and aflatoxin B1 biosynthesis in Aspergillus flavus. Specifically, we observed that (i) oxidative stress regulates SD, as implied by its inhibition by antioxidant modulators of reactive oxygen species and thiol redox state, and that (ii) aflatoxin B1 biosynthesis and SD are comodulated by oxidative stress. However, aflatoxin B1 biosynthesis is inhibited by lower stress levels compared to SD, as shown by comparison to undifferentiated A. flavus. These same oxidative stress levels also characterize a mutant A. flavus strain, lacking the global regulatory gene veA. This mutant is unable to produce sclerotia and aflatoxin B1. (iii) Further, we show that hydrogen peroxide is the main modulator of A. flavus SD, as shown by its inhibition by both an irreversible inhibitor of catalase activity and a mimetic of superoxide dismutase activity. On the other hand, aflatoxin B1 biosynthesis is controlled by a wider array of oxidative stress factors, such as lipid hydroperoxide, superoxide, and hydroxyl and thiyl radicals.  相似文献   

19.
α-Cyclopiazonic acid (CPA) is an indole tetramic acid mycotoxin. Based on our identification of the polyketide synthase–nonribosomal peptide synthase (PKS–NRPS) hybrid gene cpaA involved in cyclopiazonic acid biosynthesis in Aspergillus fungi, we carried out heterologous expression of Aspergillus flavus cpaA under α-amylase promoter in Aspergillus oryzae and identified its sole product to be the CPA biosynthetic intermediate cyclo-acetoacetyl-l-tryptophan (cAATrp). This result rationalized that the PKS–NRPS hybrid enzyme CpaA catalyzes condensation of the diketide acetoacetyl-ACP formed by the PKS module and l-Trp activated by the NRPS module. This CpaA expression system provides us an ideal platform for PKS–NRPS functional analysis, such as adenylation domain selectivity and product releasing mechanism.  相似文献   

20.
WhyAspergillus species produce aflatoxin remains an unsolved question. In this report we suggest that evolution of the aflatoxin biosynthesis gene cluster has been a multistep process. More than 300 million years ago a primordial cluster of genes allowed production of anthraquinones that may have served as insect attractants to facilitate spore dispersal. Later adaptive evolutionary steps introduced genes into the cluster that encoded enzymes associated with fungal virulence. These genes may have allowed the otherwise saprophytic fungi to be better able to colonize living plants. Later, genes for production of aflatoxins B1 and G1 were added to the basal cluster. Loss of the ability to produce aflatoxin G1 occurred with the divergence ofA. flavus, a species that, perhaps, was more successful than its ancestors at colonizing plants. This logical progression in evolutionary development of the aflatoxin biosynthetic cluster fits the phylogenetic data as well as known chemical reactivity of the initially formed anthraquinone polyketide metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号