首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Loop-out-type recombination is a type of intrachromosomal recombination followed by the excision of a chromosomal region. The detailed mechanism underlying this recombination and the genes involved in loop-out recombination remain unknown. In the present study, we investigated the functions of ku70, ligD, rad52, rad54, and rdh54 in the construction of large chromosomal deletions via loop-out recombination and the effect of the position of the targeted chromosomal region on the efficiency of loop-out recombination in Aspergillus oryzae. The efficiency of generation of large chromosomal deletions in the near-telomeric region of chromosome 3, including the aflatoxin gene cluster, was compared with that in the near-centromeric region of chromosome 8, including the tannase gene. In the Δku70 and Δku70-rdh54 strains, only precise loop-out recombination occurred in the near-telomeric region. In contrast, in the ΔligD, Δku70-rad52, and Δku70-rad54 strains, unintended chromosomal deletions by illegitimate loop-out recombination occurred in the near-telomeric region. In addition, large chromosomal deletions via loop-out recombination were efficiently achieved in the near-telomeric region, but barely achieved in the near-centromeric region, in the Δku70 strain. Induction of DNA double-strand breaks by I-SceI endonuclease facilitated large chromosomal deletions in the near-centromeric region. These results indicate that ligD, rad52, and rad54 play a role in the generation of large chromosomal deletions via precise loop-out-type recombination in the near-telomeric region and that loop-out recombination between distant sites is restricted in the near-centromeric region by chromosomal structure.  相似文献   

2.
We aim to create an Aspergillus oryzae mutant with a highly reduced chromosome, but better growth, by eliminating the nonessential regions coding various dispensable functions for its better industrial use. In our previous study, we successfully determined the outline of essential and nonessential regions by constructing a series of large chromosomal deletions in A. oryzae chromosome 7. Based on these results, we here constructed two mutants, designated RkuAF7A and RkuAF7B, lacking 24.7 and 24% (725 and 705 kb) of wild type chromosome 7, respectively, using multiple large-scale chromosomal deletions in a recursive pyrG-mediated transformation system. Both showed higher amylase activity in DPY liquid medium and faster growth rate on malt agar medium relative to the parent strain. The two mutants also displayed soft fluffy hyphal morphology when grown in DPY liquid media. In addition, the gene expression profile obtained by DNA microarray indicated that although the deletion regions were fewer than 2% of the whole genome, the effect on whole gene expression exceeded 20%. Among these, the genes involved in secondary metabolism showed a relatively large change in their gene expression levels. Together, the constructed mutants showing better growth and potential usefulness is possibly suitable for further industrial use.  相似文献   

3.
Four deletions in the human factor VIII gene have been characterized at the sequence level in patients with hemophilia A. Deletion JH 1 extends 57 kb from IVS 10 to IVS 18. Intron 13 and exon 14 are partially deleted in patients JH 7 and JH 37, with a loss of 3.2 and 2.4 kb of DNA, respectively. The 3' deletion breakpoint of the JH 21 event resides in intron 3 and extends 5' into intron 1, resulting in the loss of exons 2 and 3. Seven of the eight breakpoints sequenced (5' and 3' for each of the four deletions) occur in nonrepetitive sequence, while the 3' breakpoint of the JH 1 resides in an Alu repetitive element. All of the deletions are the result of nonhomologous recombination. The 5' and 3' breakpoints of JH 1, JH 7, and JH 37 share 2- to 3-bp homologies at the deletion junctions. In contrast, two nucleotides have been inserted at the JH 21 deletion junction. Short sequence homologies may facilitate end-joining reactions in nonhomologous recombination events.  相似文献   

4.
5.
A mutant strain (KL-38) of Aspergillus oryzae was obtained by UV irradiation. Phytase activity of KL-38 in molded rice (koji rice) was about 2.7-fold of that obtained from the parent strain (BP-1). Phytase activity of KL-38 in the submerged culture was similar to that of BP-1. Two types of phytase were produced from koji culture: phytase I (Phy I) was produced during incubation of both koji and submerged cultures, and phytase II (Phy II) was obtained only from koji culture. Phy II production was increased in KL-38 compared with BP-1, whereas the production of Phy I was similar for both KL-38 and BP-1. This finding indicates that A. oryzae has at least two types of phytase isozyme.  相似文献   

6.
7.
Cells with mutated autophosphorylation sites in the ABCDE cluster of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are defective in the repair of ionising radiation-induced DSB, but show in an in vitro test the same DNA-PK activity as the cells possessing wild type enzyme. Nevertheless, the mutated DNA-PK is able to undergo ATP-dependent autophosphorylation and inactivation. This characteristics correspond well with the phenotypic features of the L5178Y-S (LY-S) cell line that is defective in DSB repair, shows a pronounced G1 phase radiosensitivity, but in which the level of DNA-PK activity present in total cell extracts is similar to that of its radioresistant counterpart L5178Y-R (LY-R) cell line. The purpose of this work was to examine the possible alterations in the sequence encoding the cluster of autophosphorylation sites in the DNA-dependent protein kinase in LY-S cells. Despite the presence of phenotypic features indicating the possibility of such alterations, no differences were found between the sequences coding for the autophosphorylation sites in L5178Y-R and L5178Y-S cells. In conclusion, the repair defect in LY-S cells is not related to the structure of the DNA-PK autophosphorylation sites (ABCDE casette).  相似文献   

8.
Hydrophobic surface binding protein A (HsbA) is a secreted protein (14.5 kDa) isolated from the culture broth of Aspergillus oryzae RIB40 grown in a medium containing polybutylene succinate-co-adipate (PBSA) as a sole carbon source. We purified HsbA from the culture broth and determined its N-terminal amino acid sequence. We found a DNA sequence encoding a protein whose N terminus matched that of purified HsbA in the A. ozyzae genomic sequence. We cloned the hsbA genomic DNA and cDNA from A. oryzae and constructed a recombinant A. oryzae strain highly expressing hsbA. Orthologues of HsbA were present in animal pathogenic and entomopathogenic fungi. Heterologously synthesized HsbA was purified and biochemically characterized. Although the HsbA amino acid sequence suggests that HsbA may be hydrophilic, HsbA adsorbed to hydrophobic PBSA surfaces in the presence of NaCl or CaCl(2). When HsbA was adsorbed on the hydrophobic PBSA surfaces, it promoted PBSA degradation via the CutL1 polyesterase. CutL1 interacts directly with HsbA attached to the hydrophobic QCM electrode surface. These results suggest that when HsbA is adsorbed onto the PBSA surface, it recruits CutL1, and that when CutL1 is accumulated on the PBSA surface, it stimulates PBSA degradation. We previously reported that when the A. oryzae hydrophobin RolA is bound to PBSA surfaces, it too specifically recruits CutL1. Since HsbA is not a hydrophobin, A. oryzae may use several types of proteins to recruit lytic enzymes to the surface of hydrophobic solid materials and promote their degradation.  相似文献   

9.
Extracellular alkalinization and H2O2 production are important early events during induced resistance establishment in plants. In a screen for metabolites as plant resistance activators from 98 fungal isolates associated with marine sponge Hymeniacidon perleve, the cyclopiazonic acids (CPAs) produced by Aspergillus oryzae HMP-F28 induced significant extracellular alkalinization coupled with augmented H2O2 production in tobacco cell suspensions. Bioassay-guided fractionation led to the isolation and structural elucidation of a new CPA congener (4, 3-hydroxysperadine A) and three known ones (13). To construct a mutasynthetic strain to generate unnatural CPA analogues, a hybrid pks-nrps gene (cpaS) was disrupted to abolish the production of the critical precursor of cyclo-acetoacetyl-L-tryptophan (cAATrp) and all the downstream CPA products. Elimination of cAATrp will allow cAATrp mimics being processed by the CPA biosynthetic machinery to produce CPA derivatives with designed structural features.  相似文献   

10.
Conidia, derived from a strain of Aspergillus nidulans known to carry a specific chromosomal duplication, were irradiated. The duplicated segment had genetic markers, which, when eliminated from the genome, allowed the easy detection of deletion mutants. Survival curves derived following 15 MeV electron and gamma-ray irradiation were characterised by the presence of an appreciable shoulder, whilst 50 kvp X-rays gave a much smaller shoulder. Irradiation with beta-particles and alpha-particles gave rise to exponential survival curves. The RBE values for these radiations, based on the D37 value were for gamma-rays, 1.0, 15 MeV electrons 1.0, 50 kvp X-rays 1.9, beta-particles 2.1 and alpha-particles 3.4. With the exception of gamma-rays the radiations described were compared with respect to their ability to induce chromosomal deletions. When the number of deletants amongst survivors was plotted against dose, a linear relationship was found for electrons, X-rays and beta-particles. The response recorded for alpha-particles was essentially linear but with a biphasic component. The RBE values for the radiations, based on a value of unity for 15 MeV electrons were as follows: X-rays 1.3, beta-particles 0.8, alpha-particles above 7.5 krad 2.3 and below 7.5 krad 3.5. When these same data were re-plotted with number of deletants amongst survivors against log survival, electrons appeared the most efficient radiation at producing deletants amongst survivors, with an "m value" of 283 X 10(-5). Tritiated water was least efficient, the corresponding value being 182 X 10(-5). The number of deletants per 10(4) conidia plated, when plotted against dose yielded a curve which increased to a peak and then decreased linearly for all radiations. The peaks for electrons, X-rays and alpha-particles each had a value of about 14 deletants per 10(4) conidia plated and the peaks roughly corresponded with the point at which the survival curve became exponential and was clearly indicative of the accumulation of sub-lethal damage. However, for beta-particles the peak had a value of 7 deletants per 10(4) conidia plated. A non-DNA target has been implicated for cellular death following beta-particle irradiation.  相似文献   

11.
Marker rescue is an important molecular technique that enables sequential gene deletions. The Cre-loxP recombination system has been used for marker gene rescue in various organisms, including aspergilli. However, this system requires many time-consuming steps, including construction of a Cre expression plasmid, introduction of the plasmid, and Cre expression in the transformant. To circumvent this laborious process, we investigated a method wherein Cre could be directly introduced into Aspergillus oryzae protoplasts on carrier DNA such as a fragment or plasmid. In this study, we define the carrier DNA (Cre carrier) as a carrier for the Cre enzyme. A mixture of commercial Cre and nucleic acids (e.g., pUG6 plasmid) was introduced into A. oryzae protoplasts using a modified protoplast-polyethylene glycol method, resulting in the deletion of a selectable marker gene flanked by loxP sites. By using this method, we readily constructed a marker gene-rescued strain lacking ligD to optimize homologous recombination. Furthermore, we succeeded in integrative recombination at a loxP site in A. oryzae. Thus, we developed a simple method to use the Cre-loxP recombination system in A. oryzae by direct introduction of Cre into protoplasts using DNA as a carrier for the enzyme.  相似文献   

12.
Meyer DH  Bailis AM 《PloS one》2008,3(10):e3318
Telomerase is a ribonucleoprotein complex required for the replication and protection of telomeric DNA in eukaryotes. Cells lacking telomerase undergo a progressive loss of telomeric DNA that results in loss of viability and a concomitant increase in genome instability. We have used budding yeast to investigate the relationship between telomerase deficiency and the generation of chromosomal translocations, a common characteristic of cancer cells. Telomerase deficiency increased the rate of formation of spontaneous translocations by homologous recombination involving telomere proximal sequences during crisis. However, telomerase deficiency also decreased the frequency of translocation formation following multiple HO-endonuclease catalyzed DNA double-strand breaks at telomere proximal or distal sequences before, during and after crisis. This decrease correlated with a sequestration of the central homologous recombination factor, Rad52, to telomeres determined by chromatin immuno-precipitation. This suggests that telomerase deficiency results in the sequestration of Rad52 to telomeres, limiting the capacity of the cell to repair double-strand breaks throughout the genome. Increased spontaneous translocation formation in telomerase-deficient yeast cells undergoing crisis is consistent with the increased incidence of cancer in elderly humans, as the majority of our cells lack telomerase. Decreased translocation formation by recombinational repair of double-strand breaks in telomerase-deficient yeast suggests that the reemergence of telomerase expression observed in many human tumors may further stimulate genome rearrangement. Thus, telomerase may exert a substantial effect on global genome stability, which may bear significantly on the appearance and progression of cancer in humans.  相似文献   

13.
Biotransformation of piceid in Polygonum cuspidatum to resveratrol by Aspergillus oryzae was investigated in this study. Resveratrol is widely used in medicine, food, and cosmetic because of its pharmacological properties. However, it has a much lower content in plants compared with its glucoside piceid, which has a much lower bioavailability. Traditionally, the aglycone is acquired by acid or enzymatic hydrolysis of its glucoside, but the violent condition and the acid pollution in hydrolytic reaction and the high cost of the enzyme limit their industrial development. In this paper, fermentation of P. cuspidatum by A. oryzae was successfully performed, during which, piceid was converted to resveratrol with the highest yield of trans-resveratrol 1.35%, 3.6 times higher than that obtained from raw herb by microwave-assisted extraction. Scale-up production was also performed and the yield of trans-resveratrol was 3.1 times higher after 24 h incubation. Therefore, biotransformation is a better method to increase the yield of resveratrol because of its high yield and mild conditions.  相似文献   

14.
Comparisons were made for alpha-galactosidase production using red gram plant waste (RGPW) with wheat bran (WB) and other locally available substrates using the fungus Aspergillus oryzae under solid-state fermentation (SSF). RGPW proved to be potential substrate for alpha-galactosidase production as it gave higher enzyme titers (3.4 U/g) compared to WB (2.7 U/g) and other substrates tested. Mixing WB with RGPW (1:1, w/w) resulted enhanced alpha-galactosidase yield. The volume of moistening agent in the ratio of 1:2 (w/v), pH 5.5 and 1 ml (1 x 10(6) spores) of inoculum volume and four days incubation were optimum for alpha-galactosidase production. Increase in substrate concentration (RGPW+WB) did not decrease enzyme yield in trays.  相似文献   

15.
Despite the demonstrated value of chromosomal deletions and deficiencies as tools in plant and animal genome research, in the genetic model plant species Arabidopsis thaliana, such mutations have not been extensively studied. For example, it is not known whether large deletions in different regions of the genome can be tolerated in diploid plants that are heterozygous for such mutations. Similarly the viability or inviability of monosomics has not been examined in detail. To investigate these questions, we have used gamma-irradiated haploid wild-type pollen to pollinate diploid and tetraploid multimarker lines of Arabidopsis. Examination of M1 progenies revealed that chromosome loss mutations and large deletions were induced in the irradiated pollen. Such mutations were eliminated in diploid M1 plants due to dominant lethality but could be rescued in triploid M1 progeny. The use of irradiated pollen and tetraploid marker lines of Arabidopsis is a convenient way of generating deletions and modified chromosomes and provides a genetic tool for deletion mapping and for analysis of chromosomal regions essential for chromosome maintenance.  相似文献   

16.
In S and G2 phase mammalian cells DNA double strand breaks (DSBs) can potentially be repaired by homologous recombination (HR) or non-homologous end-joining (NHEJ). Results of several studies suggest that these two mechanistically distinct repair pathways can compete for DNA ends. Because HR and NHEJ differ with respect to error susceptibility, generation of chromosome rearrangements, which are potentially carcinogenic products of DSB repair, may depend on the pathway choice. To investigate this hypothesis, the influence of HR and NHEJ inhibition on the frequencies of chromosome aberrations in G2 phase cells was investigated. SW-1573 and RKO cells were treated with mild (41 °C) hyperthermia in order to disable HR and/or NU7441/cisplatin to inactivate NHEJ and frequencies of chromosomal fragments (resulting from unrepaired DSBs) and translocations (products of erroneous DSB rejoining) were studied using premature chromosome condensation (PCC) combined with fluorescence in situ hybridization (FISH).It is shown here that temporary inhibition of HR by hyperthermia results in increased frequency of ionizing-radiation (IR)-induced chromosomal translocations and that this effect is abrogated by NU7441- or cisplatin-mediated inhibition of NHEJ. The results suggest that in the absence of HR, DSB repair is shifted to the error-prone NHEJ pathway resulting in increased frequencies of chromosomal rearrangements. These results might be of consequence for clinical cancer treatment approaches that aim at inhibition of one or more DSB repair pathways.  相似文献   

17.
In this study Aspergillus oryzae was utilized to remove azo dyes from aqueous solution. Physically induced in its paramorphogenic form to produce standardized mycelial pellets, the non-autoclaved and autoclaved hyphae biomass was applied to biosorb the reactive dyes Procion Red HE7B (PR-HE7B) and Procion Violet H3R (PV-H3R) at different pH values (2.50, 4.50, and 6.50). The best pH for biosorption was 2.50, though the autoclaved demonstrated a higher biosorption capacity than the non-autoclaved pellets. The toxicity level was determined using the Trimmed Spearman–Karber method with Daphnia similis in all bioassays. The calculated toxicity of PV-H3R (LC100 62.50 μg mL−1) was higher than to PR-HE7B (LC100 300.00 μg mL−1), and its results brought out that the decrease of toxicity levels to zero might be accomplished by adding small quantities of pelletized A. oryzae to the solutions.  相似文献   

18.
The nitrate reductase gene (niaD) is the most frequently utilized as a selectable marker for homologous integration at the niaD locus of Aspergillus oryzae. In this study we developed a method for curing of the niaD-based plasmid integrated on the A. oryzae genome. Positive selection using a modified chlorate medium containing leucine as a nitrogen source enabled efficient isolation of the strains deficient in nitrate assimilation from the niaD(+) transformant. PCR analysis of the strains confirmed that the homologously integrated plasmid carrying the h2b-egfp fusion gene was cured by intrachromosomal recombination which was accompanied by the loss of the EGFP-fluorescence.  相似文献   

19.
Loss of heterozygosity by whole or partial loss of chromosomal regions is crucial to genetic disorders, cancers and diseases. It is difficult to analyze the mechanisms of pathogenesis caused by large-scale chromosomal abnormalities due to the extreme rarity of this mutagenesis. Using a Cre/inverted loxP system, we have generated a chromosome elimination cassette (CEC) that induces a selective loss of embryonic-stem-cell-derived chromosomes in undifferentiated embryonic stem cell-somatic cell hybrids. Here, due to the increased expression of Cre, rapid formation of Cre recombination products and immediate loss of CEC-tagged chromosomes were detected by fluorescence in situ hybridization. Cre also initiated intrachromosomal recombination between identical short sequences outside loxP, leading to large chromosomal deletions of CEC-tagged regions. The Cre-mediated antiparallel synapses likely act as a scaffold to bring the identical short sequences into close proximity for recombination. This CEC technology might allow better understanding of the modulator sequences responsible for the tangled structure formation and its solution mechanism, inducing mitotic recombination leading to chromosomal deletions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号