首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine if the daily pattern of NO3- and NH4+ uptake is affected by acidity or NO3- : NH4+ ratio of the nutrient solution, non-nodulated soybean plants (Glycine max) were exposed for 21 days to replenished, complete nutrient solutions at pH 6.0, 5.5, 5.0, and 4.5 which contained either 1.0 mM NH4+, 1.0 mM NO3- [correction of NO3+], 0.67 mM NH4+ plus 0.33 mM NO3- (2:1 NH4+ : NO3-) [correction of (2:1 NH3+ : NO4-)], or 0.33 mM NH4+ plus 0.67 mM NO3- (1:2 NH4+ : NO3-). Net uptake rates of NH4+ and NO3- were measured daily by ion chromatography as depletion from the replenished solutions. When NH4+ and NO3- were supplied together, cumulative uptake of total nitrogen was not affected by pH or solution NH4+ : NO3- ratio. The cumulative proportion of nitrogen absorbed as NH4+ decreased with increasing acidity; however, the proportional uptake of NH4+ and NO3- was not constant, but varied day-to-day. This day-to-day variation in relative proportions of NH4+ and NO3- absorbed when NH4+ : NO3- ratio and pH of solution were constant indicates that the regulatory mechanism is not directly competitive. Regardless of the effect of pH on cumulative uptake of NH4+, the specific nitrogen uptake rates from mixed and from individual NH4+ and NO3- sources oscillated between maxima and minima at each pH with average periodicities similar to the expected interval of leaf emergence.  相似文献   

2.
IL-10 is an anti-inflammatory cytokine that suppresses NO synthase (NOS) and production of NO; its lack may promote NO production and alterations in cytokines modulated by NO with allergic airway inflammation (AI), such as IL-18 and IL-4. Therefore, we induced AI in IL-10 knockout ((-/-)) and IL-10-sufficient C57BL/6 (C57) mice with inhaled OVA and measured airway NO production, as exhaled NO (E(NO)) and bronchoalveolar lavage fluid nitrite levels. E(NO) and nitrite levels were elevated significantly in naive IL-10(-/-) mice as compared with C57 mice. With AI, E(NO) and nitrite levels increased in C57 mice and decreased in IL-10(-/-) mice. IL-18 production fell with both AI and addition of S-nitroso-N-acetyl-d,l-penicillamine (a NO donor) but was not significantly increased by chemical NOS inhibition by l-N(5)-(1-iminoethyl)-ornithine. IL-4 AI was increased significantly (up to 10-fold greater) in the absence of IL-10 but was reduced significantly with chemical inhibition of NOS. Airway responsiveness was lower in IL-10(-/-) mice and was associated with alteration in production of NO and IL-4. Thus, IL-4 production was increased, and likely decreased NO production, in a way not predicted by the absence of IL-10. Inhibition of IL-4 production, with inhibition of NOS in the absence of IL-10, demonstrated the importance of a NO and IL-4 feedback mechanism regulating this interaction.  相似文献   

3.
The inhibitory effect of NH4+ on net NO3- uptake has been attributed to an enhancement of efflux and, recently, to an inhibition of influx. To study this controversy, we devised treatments to distinguish the effects of NH4+ on these two processes. Roots of intact barley (Hordeum vulgare L.) seedlings, uninduced or induced with NO3- or NO2-, were used. Net uptake and efflux, respectively, were determined by following the depletion and accumulation in the external solutions. In roots of both uninduced and NO2- -induced seedlings, NO3- efflux was negligible; hence, the initial uptake rates were equivalent to influx. Under these conditions, NH4+ had little effect on NO3- uptake (influx) rates by either the low- or high-Km uptake systems. In contrast, in plants preloaded with NO3-, NH4+ and its analog CH3NH3+ decreased net uptake, presumably by enhancing NO3- efflux. The stimulatory effect of NH4+ on NO3- efflux was a function of external NH4+ and internal NO3- concentration. These results were corroborated by the absence of any effect of NH4+ on NO2- uptake unless the roots were preloaded with NO2-. In this case NH4+ increased efflux and decreased net uptake. Hence, the main effect of NH4+ on net NO3- and NO2- uptake appears to be due to enhancement of efflux and not to inhibition of influx.  相似文献   

4.
This study measured total osmolarity and concentrations of NH(4)(+), NO(3)(-), K(+), soluble carbohydrates, and organic acids in maize seminal roots as a function of distance from the apex, and NH(4)(+) and NO(3)(-) in xylem sap for plants receiving NH(4)(+) or NO(3)(-) as a sole N-source, NH(4)(+) plus NO(3)(-), or no nitrogen at all. The disparity between net deposition rates and net exogenous influx of NH(4)(+) indicated that growing cells imported NH(4)(+) from more mature tissue, whereas more mature root tissues assimilated or translocated a portion of the NH(4)(+) absorbed. Net root NO(3)(-) influx under Ca(NO(3))(2) nutrition was adequate to account for pools found in the growth zone and provided twice as much as was deposited locally throughout the non-growing tissue. In contrast, net root NO(3)(-) influx under NH(4)NO(3) was less than the local deposition rate in the growth zone, indicating that additional NO(3)(-) was imported or metabolically produced. The profile of NO(3)(-) deposition rate in the growth zone, however, was similar for the plants receiving Ca(NO(3))(2) or NH(4)NO(3). These results suggest that NO(3)(-) may serve a major role as an osmoticant for supporting root elongation in the basal part of the growth zone and maintaining root function in the young mature tissues.  相似文献   

5.
13NO3 was used to determine the intracellular compartmentation of NO3 in barley roots (Hordeum vulgare cv. Klondike), followed by a thermodynamic analysis of nitrate transport.Plants were grown in one-tenth Johnson's medium with 1 mol m3 NO3 (NO3-grown plants) or 1 mol m3 NH4NO3 (NH4NO3-grown plants).The cytoplasmic concentrations of NO3 in roots were only approx. 3-6 mol m3 (half-time for exchange approx. 21 s) in both NO3 and NH4NO3 plants. These pool sizes are consistent with published nitrate microelectrode data, but not with previous compartmental analyses.The electrochemical potential gradient for nitrate across the plasmalemma was +26 +/-1 kJ mol1 in both NO3- and NH4NO3-grown plants, indicating active uptake of nitrate. At an external pH of 6, the plasmalemma electrochemical potential for protons would be approx. -29 +/- 4 kJ mol1. If the cytoplasmic pH was 7.3 +/- 0.2, then 2H+/1NO3 cotransport, or a primary ATP-driven pump (2NO3/1ATP), are both thermodynamically possible. NO3 is also actively transported across the tonoplast (approx. +6 to 7 kJ mol1).  相似文献   

6.
Nitric oxide (NO), synthesized from l-arginine by NO synthase (NOS), is a key regulator of placental angiogenesis and growth during pregnancy. However, little is known about placental NO synthesis associated with ovine conceptus development. This study was conducted to test the hypothesis that placental NO synthesis is greatest during early gestation. Columbia cross-bred ewes were hysterectomized on Days 30, 40, 60, 80, 100, 120, or 140 of gestation (n = 4 per day) to obtain placentomes, intercotyledonary placenta, and intercaruncular endometrium. Tissues were analyzed for constitutive NOS (cNOS) and inducible NOS (iNOS) activities, NO synthesis, tetrahydrobiopterin (BH4) and NADPH (essential cofactors for NOS), and GTP-cyclohydrolase I (GTP-CH, a rate-controlling enzyme in de novo synthesis of BH4) activity using radiochemical and chromatographic methods. Marked changes in NO synthesis, cNOS and iNOS activities, GTP-CH activity, and concentrations of BH4 and NADPH occurred in all placental and endometrial tissues between Days 30 and 140 of gestation. NO synthesis peaked on Day 60 of gestation in both intercotyledonary placenta and placentomes and on Days 40-60 in intercaruncular endometrium. NO synthesis in placentomes increased 100% between Days 80 and 100 of gestation, when placental and uterine blood flows increase continuously. In all placental and endometrial tissues, NO synthesis was positively correlated with total NOS activity, GTP-CH activity, and concentrations of BH4 and NADPH. Importantly, these results indicate a high degree of metabolic coordination among the several integrated pathways that support high rates of NO synthesis in the conceptus and uterus and establish a new base of information for future studies to define the roles of NO in fetal-placental growth and development.  相似文献   

7.
The interaction of nitric oxide (NO) with iron-sulfur cluster proteins results in the formation of dinitrosyl iron complexes (DNICs) coordinated by cysteine residues from the peptide backbone or with low molecular weight sulfur-containing molecules like glutathione. Such DNICs are among the modes available in biology to store, transport, and deliver NO to its relevant targets. In order to elucidate the fundamental chemistry underlying the formation of DNICs and to characterize possible intermediates in the process, we have investigated the interaction of NO (g) and NO(+) with iron-sulfur complexes having the formula [Fe(SR)(4)](2-), where R=(t)Bu, Ph, or benzyl, chosen to mimic sulfur-rich iron sites in biology. The reaction of NO (g) with [Fe(S(t)Bu)(4)](2-) or [Fe(SBz)(4)](2-) cleanly affords the mononitrosyl complexes (MNICs), [Fe(S(t)Bu)(3)(NO)](-) (1) and [Fe(SBz)(3)(NO)](-) (3), respectively, by ligand displacement. Mononitrosyl species of this kind were previously unknown. These complexes further react with NO (g) to generate the corresponding DNICs, [Fe(SPh)(2)(NO)(2)](-) (4) and [Fe(SBz)(2)(NO)(2)](-) (5), with concomitant reductive elimination of the coordinated thiolate donors. Reaction of [Fe(SR)(4)](2-) complexes with NO(+) proceeds by a different pathway to yield the corresponding dinitrosyl S-bridged Roussin red ester complexes, [Fe(2)(mu-S(t)Bu)(2)(NO)(4)] (2), [Fe(2)(mu-SPh)(2)(NO)(4)] (7) and [Fe(2)(mu-SBz)(2)(NO)(4)] (8). The NO/NO(+) reactivity of an Fe(II) complex with a mixed nitrogen/sulfur coordination sphere was also investigated. The DNIC and red ester species, [Fe(S-o-NH(2)C(6)H(4))(2)(NO)(2)](-) (6) and [Fe(2)(mu-S-o-NH(2)C(6)H(4))(2)(NO)(4)] (9), were generated. The structures of 8 and 9 were verified by X-ray crystallography. The MNIC complex 1 can efficiently deliver NO to iron-porphyrin complexes like [Fe(TPP)Cl], a reaction that is aided by light. Removal of the coordinated NO ligand of 1 by photolysis and addition of elemental sulfur generates higher nuclearity Fe/S clusters.  相似文献   

8.
Sixteen derivatives of N-acetyl-3-O-methyldopamine (NAMDA), an inhibitor of BH4 synthesis, were designed and synthesized. The ability of these derivatives to inhibit NO and BH4 production by lipopolysaccharide-stimulated BV-2 microglial cells was determined. While NAMDA at 100 microM inhibited NO and BH4 production by only about 20%, its catecholamide 8, indole 23 derivative, 13, and N-acetyl tetrahydroisoquinoline 25 inhibited the NO production by >50% at the same concentration. In particular, 13 and 25 inhibited both NO and BH4 production to similar degrees, which suggested that these compounds might inhibit NO production by blocking BH4-dependent dimerization of the newly synthesized iNOS monomer.  相似文献   

9.
Involvement of Gi/o in the PAR-4-induced NO production in endothelial cells   总被引:2,自引:0,他引:2  
We investigated the involvement of G(i/o) protein in NO production following the activation of proteinase-activated receptor-4 (PAR-4) in cultured bovine aortic endothelial cells. AYPGKF-NH(2) (PAR-4 activating peptide), thrombin, and ionomycin induced a concentration-dependent NO production, with the maximal production seen at 30 microM, 0.1U/ml, and 1 microM, respectively. Ionomycin elevated [Ca(2+)](i) in a concentration-dependent manner. However, AYPGKF-NH(2) and thrombin induced no [Ca(2+)](i) elevation. The loading of cells with BAPTA almost completely inhibited both the NO production and [Ca(2+)](i) elevation induced by 1 microM ionomycin, while it had no significant effect on the AYPGKF-NH(2)-induced NO production. Treatment with pertussis toxin inhibited the AYPGKF-NH(2)-induced NO production, while it had no effect on the ionomycin-induced NO production. Our findings thus demonstrate, for the first time, that PAR-4 activation induced NO production in a manner mostly independent of the Ca(2+) signal and also that G(i/o) is involved in such NO production in vascular endothelial cells.  相似文献   

10.
Nitrate supply affects ammonium transport in canola roots   总被引:1,自引:0,他引:1  
Plants may suffer from ammonium (NH4+) toxicity when NH4+ is the sole nitrogen source. Nitrate (NO3-) is known to alleviate NH4+ toxicity, but the mechanisms are unknown. This study has evaluated possible mechanisms of NO3- alleviation of NH4+ toxicity in canola (Brassica napus L.). Dynamics of net fluxes of NH4+, H+, K+ and Ca2+ were assessed, using a non-invasive microelectrode (MIFE) technique, in plants having different NO3- supplies, after single or several subsequent increases in external NH4Cl concentration. After an increase in external NH4Cl without NO3-, NH4+ net fluxes demonstrated three distinct stages: release (tau1), return to uptake (tau2), and a decrease in uptake rate (tau3). The presence of NO3- in the bathing medium prevented the tau1 release and also resulted in slower activation of the tau3 stage. Net fluxes of Ca2+ were in the opposite direction to NH4+ net fluxes, regardless of NO3- supply. In contrast, H+ and K+ net fluxes and change in external pH were not correlated with NH4+ net fluxes. It is concluded that (i) NO3- primarily affects the NH4+ low-affinity influx system; and (ii) NH4+ transport is inversely linked to Ca2+ net flux.  相似文献   

11.
The influence of a 12-h pretreatment with either NO3-, NH4+, glutamine, or glutamate (300 [mu]M) on the apparent induction of NO3- uptake was investigated. Net fluxes of NO3- into roots of intact, 7-d-old barley (Hordeum vulgare L. cv Prato) seedlings in solution culture were estimated from ion activity gradients measured with NO3--selective microelectrodes in the unstirred layer of solution immediately external to the root surface. Control plants, pretreated with nitrogen-free nutrient solution, exhibited a sigmoidal increase in net NO3- uptake, reaching a maximum rate between 8 and 9 h after first exposure to NO3-. Plants pretreated with NH4+ or Glu exhibited a delay of several hours in the initiation of the induction process after they had been exposed to NO3-. In Gln-pretreated plants, however, responses ranged from no delay of the induction process to delays comparable to those observed following NH4+ or Glu pretreatments. Only treatment with NO3-resulted in the induction of NO3- uptake, whereas pretreatments with NH4+, Gln, or Glu tended to delay induction of NO3- uptake upon subsequent exposure to NO3-.  相似文献   

12.
Catechol estrogens (CEs), such as 4-hydroxyestradiol (4-OHE2), undergo redox cycling during which reactive oxygen species (ROS) such as superoxide (O2*-) and the chemically reactive estrogen semiquinone (CE-SQ) and quinone (CE-Q) intermediates are produced. The quinone's putative mutagenicity may be enhanced by ROS and/or reactive nitrogen species. High concentrations of nitric oxide (NO) present during inflammatory conditions may react with (O2*-) to form peroxynitrite (ONOO-), a potent oxidant implicated in many pathological conditions. In this study, the possible generation of peroxynitrite from the interaction of CEs and NO and its effect on plasmid DNA and intact cells were investigated. A combination of 4-OHE2 and NO increased the level of single strand breaks (SSB) in plasmid DNA by more than 60% compared to vehicle controls in a metal-free buffer system. 4-OHE2 alone or NO alone had no effect. Results obtained from use of different antioxidants and ROS scavengers suggested a role of peroxynitrite in oxidative stress. In cells, 4-OHE2 or NO alone induced dose-dependent DNA damage as assessed by single cell gel electrophoresis. Co-treatment with 4-OHE2 and NO had an additive effect at lower doses. Generation of intracellular ROS was measured by the oxidation of carboxy-2',7'-dichlorofluorescein diacetate to the fluorescent compound carboxy-2',7'-dichlorofluorescein. NO alone, in oxygenated media, generated little ROS whereas 4-OHE2 produced approximately 70% increase in fluorescence. When added together 4-OHE2 and NO, produced a 2-fold increase in ROS. The generation and involvement ofperoxynitrite to this increase was implied since uric acid inhibited it. Generation ofperoxynitrite was also observed by use of dihydrorhodamine 123. Therefore, we conclude that combined treatments with 4-OHE2 and NO generated peroxynitrite seen from increased fluorescence and its inhibition by uric acid or combined SOD and catalase treatments. Results reported here suggest a role of peroxynitrite in causing damage to biomolecules when CEs and NO are present simultaneously. This may have biological relevance as high concentrations of NO formed during inflammatory conditions may exacerbate cancers due to estrogens.  相似文献   

13.
Nitric oxide (NO) plays an important role on several biological functions. Recently, it has been reported the possibility of modifying the NO release profile from the NO donors through its coupling to gold nanoparticles (AuNPs). Thus, AuNPs were synthesized and they were exposed to the NO donor ruthenium complex Cis-[Ru(bpy)2(NO)(4PySH)].(PF6)3 termed (Ru-4PySH)—forming AuNPs-{Ru-4PySH}n cluster. Our results indicate that AuNPs do not modify the maximum effect (ME) and potency (pD2) in the vasodilation induced by Ru-4PySH. Both complexes induce similar vascular relaxation in concentration-dependent way. However, the NO released from the complex AuNPs-{Ru-4PySH}n is lower than Ru-4PySH. Both complexes release only NO0 specie, but AuNPs-{Ru-4PySH}n releases NO in constant way and exclusively in the extracellular medium. In time-course, Ru-4Py-SH was faster than AuNPs-{Ru-4PySH}n in inducing the maximum vasodilation. Inhibition of soluble guanylyl cyclase (sGC) abolished the vasodilation induced by Ru-4PYSH, but not by AuNPs-{Ru-4PySH}n. Non-selective potassium (K+) channel blocker TEA had no effect on the vasodilation induced by AuNPs-{Ru-4PySH}n, but it reduced the potency to Ru-4PySH. In conclusion, our results suggest that AuNPs can reduce the permeability of NO donor Ru-4PySH due to AuNPs-{Ru-4PySH}n cluster formation. AuNPs reduce NO release, but they do not impair the vasodilator effect induced by the NO donor. Ru-4PySH induces vasodilation by sGC and K+ channels activation, while AuNPs-{Ru-4PySH}n activates mainly sGC. Taken together, these findings represent a new pharmacological strategy to control the NO release which could activate selective biological targets.  相似文献   

14.
During a photo-induced catalytic reaction under near UV irradiation to an aqueous suspension of Ti4O2, about 95% of NO2- was oxidized to NO3-, but NH4+ was not detected. The oxidation was inhibited by the addition of mannitol or under anaerobic conditions. The nitration of HPA was observed in the presence of t-buthanol, suggesting the formation of ONOO. An ESR spectrum gave a triplet signal at g = 2.041,in the presence of NO2-, mannitol, FeSO4, and MGD, indicating the reduction of NO2- to NO.  相似文献   

15.
An increase in cAMP and/or cGMP induces vasodilation which could be potentiated by endothelium or NO-donors. Cyclic nucleotide phosphodiesterases (PDE) are differently distributed in vascular tissues. cAMP hydrolyzing PDE isozymes in endothelial cells are represented by PDE2 (cGMP stimulated-PDE) and PDE4 (cGMP insensitive-PDE), whereas in smooth muscle cells PDE3 (cGMP inhibited-PDE) and PDE4 are present. To investigate the role of NO in vasodilation induced by PDE inhibitors, we studied the effects of PDE3- or PDE4-inhibitor alone and their combination on cyclic nucleotide levels, on relaxation of precontracted aorta and on protein kinase implication. Furthermore, the direct effect of dinitrosyl iron complex (DNIC) was studied on purified recombinant PDE4B. The results show that: 1) in endothelial cells PDE4 inhibition may up-regulate basal production of NO, this effect being potentiated by PDE2 inhibition; 2) in smooth muscle cGMP produced by NO inhibits PDE3 and increases cAMP level allowing PDE4 to participate in vascular contraction; 3) protein kinase G mediates the relaxing effects of PDE3 or PDE4 inhibition. 4) DNIC inhibits non competitively PDE4B indicating a direct effect of NO on PDE4 which could explain an additive vasodilatory effect of NO. A direct and a cGMP related cross-talk between NO and cAMP-PDEs, may participate into the vasomodulation mediated by cAMP activation of protein kinase G.  相似文献   

16.
We tested the hypothesis that endothelial cell nitric oxide synthase (ecNOS) mediates the tumor necrosis factor (TNF)-alpha-induced increase in nitric oxide (NO) and albumin permeability in pulmonary microvessel endothelial monolayers (PEM). PEM lysates were analyzed for ecNOS mRNA (RT-PCR), ecNOS protein (Western immunoblot), NO levels (NO, the oxidation product of NO), and barrier function (albumin clearance rate). PEM were incubated with TNF (50 ng/ml) for 0.5, 2, 4, and 24 h. TNF induced a decrease in ecNOS mRNA at 2, 4, and 24 h. TNF induced an acute (0.5 h) increase followed by a protracted decrease (4-24 h) in ecNOS protein levels. The other NOS isotypes, inducible and brain NOS, could not be detected in the PEM using RT-PCR and Western blot assay. ecNOS antisense oligonucleotide decreased ecNOS protein, which prevented the increase in NO and albumin permeability at TNF-4 h. Spermine-NONOATE, the NO agonist, ablated the protective effect of ecNOS antisense oligonucleotide on albumin permeability in response to TNF-4 h. However, ecNOS antisense oligonucleotide had no effect on the TNF-induced increase in albumin permeability at 24 h despite prevention of the increase in NO. The data indicate that the isotype ecNOS mediates generation of NO and the acute (i.e., 4 h) barrier dysfunction; however, the prolonged (i.e., 24 h) increase in the TNF-induced increase in endothelial permeability is independent of NO.  相似文献   

17.
Under anaerobic conditions, Klebsiella pneumoniae reduced nitrite (NO2-), yielding nitrous oxide (N2O) and ammonium ions (NH4+) as products. Nitrous oxide formation accounted for about 5% of the total NO2- reduced, and NH4+ production accounted for the remainder. Glucose and pyruvate were the electron donors for NO2- reduction to N2O by whole cells, whereas glucose, NADH, and NADPH were found to be the electron donors when cell extracts were used. On the one hand, formate failed to serve as an electron donor for NO2- reduction to N2O and NH4+, whereas on the other hand, formate was the best electron donor for nitrate reduction in either whole cells or cell extracts. Mutants that are defective in the reduction of NO2- to NH4+ were isolated, and these strains were found to produce N2O at rates comparable to that of the parent strain. These results suggest that the nitrite reductase producing N2O is distinct from that producing NH4+. Nitrous oxide production from nitric oxide (NO) occurred in all mutants tested, at rates comparable to that of the parent strain. This result suggests that NO reduction to N2O, which also uses NADH as the electron donor, is independent of the protein(s) catalyzing the reduction of NO2- to N2O.  相似文献   

18.
生物喋呤的生物学效应及其在脓毒症中的意义   总被引:15,自引:0,他引:15  
Li HY  Yao YM  Shi ZG 《生理科学进展》1999,30(4):303-308
研究表明,一氧化氮(NO)的过度产生可能是诱发脓毒性休克的最后共同通路,而生物喋呤为一氧化氮合酶(NOS)重要的辅因子。多种免疫刺激因子均可诱导细胞内BH4合成显著增加,其可瑟NOS紧密结合,调控NO的合成与释放。本文讨论了BH4的生物学效应,调控机制及其在脓毒症中的作用,并简要介绍其合成抑制剂在脓毒症防治中的潜在意义。  相似文献   

19.
The nitrophorins are a family of proteins that use ferric heme to transport nitric oxide (NO) from the salivary glands of blood-sucking insects to their victims, resulting in vasodilation and reduced blood coagulation. We have refined atomic resolution structures of nitrophorin 4 (NP4) from Rhodnius prolixus complexed with NO (1.08 A) and NH(3) (1.15 A), yielding a highly detailed picture of the iron coordination sphere. In NP4-NO, the NO nitrogen is coordinated to iron (Fe-N distance = 1.66 A) and is somewhat bent (Fe-N-O angle = 156 degrees ), with bending occurring in the same plane as the proximal histidine ring. The Fe(NO)(heme)(His) coordination geometry is unusual but consistent with an Fe(III) oxidation state that is stabilized by a highly ruffled heme. Heme ruffling occurs in both structures, apparently due to close contacts between the heme and leucines 123 and 133, but increases on binding NO even though the steric contacts have not changed. We also report the structure of NP4 in complexes with histamine (1.50 A) and imidazole (1.27 A). Unexpectedly, two mobile loops that rearrange to pack against the bound NO in NP4-NO, also rearrange in the NP4-imidazole complex. This conformational change is apparently driven by the nonpolar nature of the NO and imidazole (as bound) ligands. Taken together, the desolvation of the NO binding pocket through a change in protein conformation, and the bending of the NO moiety, possibly through protein-assisted heme ruffling, may lead to a nitrosyl-heme complex that is unusually resistant to autoreduction.  相似文献   

20.
In this study, we examined the regulation by putrescine, spermidine and spermine of nitric oxide (NO) biosynthesis in Arabidopsis thaliana seedlings. Using a fluorimetric method employing the cell-impermeable NO-binding dye diaminorhodamine-4M (DAR-4M), we observed that the polyamines (PAs) spermidine and spermine greatly increased NO release in the seedlings, whereas arginine and putrescine had little or no effect. Spermine, the most active PA, stimulated NO release with no apparent lag phase. The response was quenched by addition of 2-aminoethyl-2-thiopseudourea (AET), an inhibitor of the animal nitric oxide synthase (NOS) and plant NO biosynthesis, and by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-1-oxy-3-oxide (PTIO), an NO scavenger. By fluorescence microscopy, using the cell-permeable NO-binding dye diaminorhodamine-4M acetoxymethyl ester (DAR-4M AM), we observed that PAs induced NO biosynthesis in specific tissues in Arabidopsis seedlings. Spermine and spermidine increased NO biosynthesis in the elongation zone of the Arabidopsis root tip and in primary leaves, especially in the veins and trichomes, while in cotyledons little or no effect of PAs beyond the endogenous levels of NO-induced fluorescence was observed. We conclude that PAs induce NO biosynthesis in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号