首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marine mammal Brucella spp. have been isolated from pinnipeds (B. pinnipedialis) and cetaceans (B. ceti) from around the world. Although the zoonotic potential of marine mammal brucellae is largely unknown, reports of human disease exist. There are few studies of the mechanisms of bacterial intracellular invasion and multiplication involving the marine mammal Brucella spp. We examined the infective capacity of two genetically different B. pinnipedialis strains (reference strain; NTCT 12890 and a hooded seal isolate; B17) by measuring the ability of the bacteria to enter and replicate in cultured phagocytes and epithelial cells. Human macrophage-like cells (THP-1), two murine macrophage cell lines (RAW264.7 and J774A.1), and a human malignant epithelial cell line (HeLa S3) were challenged with bacteria in a gentamicin protection assay. Our results show that B. pinnipedialis is internalized, but is then gradually eliminated during the next 72 – 96 hours. Confocal microscopy revealed that intracellular B. pinnipedialis hooded seal strain colocalized with lysosomal compartments at 1.5 and 24 hours after infection. Intracellular presence of B. pinnipedialis hooded seal strain was verified by transmission electron microscopy. By using a cholesterol-scavenging lipid inhibitor, entrance of B. pinnipedialis hooded seal strain in human macrophages was significantly reduced by 65.8 % (± 17.3), suggesting involvement of lipid-rafts in intracellular entry. Murine macrophages invaded by B. pinnipedialis do not release nitric oxide (NO) and intracellular bacterial presence does not induce cell death. In summary, B. pinnipedialis hooded seal strain can enter human and murine macrophages, as well as human epithelial cells. Intracellular entry of B. pinnipedialis hooded seal strain involves, but seems not to be limited to, lipid-rafts in human macrophages. Brucella pinnipedialis does not multiply or survive for prolonged periods intracellulary.  相似文献   

2.
Brucellosis is a zoonosis of worldwide distribution with numerous animal host species. Since the novel isolation of Brucella spp. from marine mammals in 1994 the bacteria have been isolated from various marine mammal hosts. The marine mammal reference strains Brucella pinnipedialis 12890 (harbour seal, Phoca vitulina) and Brucella ceti 12891 (harbour porpoise, Phocoena phocoena) were included in genus Brucella in 2007, however, their pathogenicity in the mouse model is pending. Herein this is evaluated in BALB/c mice with Brucella suis 1330 as a control. Both marine mammal strains were attenuated, however, B. ceti was present at higher levels than B. pinnipedialis in blood, spleen and liver throughout the infection, in addition B. suis and B. ceti were isolated from brains and faeces at times with high levels of bacteraemia. In B. suis-infected mice serum cytokines peaked at day 7. In B. pinnipedialis-infected mice, levels were similar, but peaked predominantly at day 3 and an earlier peak in spleen weight likewise implied an earlier response. The inflammatory response induced pathology in the spleen and liver. In B. ceti-infected mice, most serum cytokine levels were comparable to those in uninfected mice, consistent with a limited inflammatory response, which also was indicated by restricted spleen and liver pathology. Specific immune responses against all three strains were detected in vitro after stimulation of splenocytes from infected mice with the homologous heat-killed brucellae. Antibody responses in vivo were also induced by the three brucellae. The immunological pattern of B. ceti in combination with persistence in organs and limited pathology has heretofore not been described for other brucellae. These two marine mammal wildtype strains show an attenuated pattern in BALB/c mice only previously described for Brucella neotomea.  相似文献   

3.

Background  

Bacteria of the genus Brucella are the causative organisms of brucellosis in animals and man. Previous characterisation of Brucella strains originating from marine mammals showed them to be distinct from the terrestrial species and likely to comprise one or more new taxa. Recently two new species comprising Brucella isolates from marine mammals, B. pinnipedialis and B. ceti, were validly published. Here we report on an extensive study of the molecular and phenotypic characteristics of marine mammal Brucella isolates and on how these characteristics relate to the newly described species.  相似文献   

4.
A high prevalence of Brucella pinnipedialis serology and bacteriology positive animals has been found in the Northeast Atlantic stock of hooded seal ( Cystophora cristata ); however no associated gross pathological changes have been identified. Marine mammal brucellae have previously displayed different infection patterns in human and murine macrophages. To investigate if marine mammal Brucella spp. are able to invade and multiply in cells originating from a presumed host species, we infected alveolar macrophages from hooded seal with a B . pinnipedialis hooded seal isolate. Hooded seal alveolar macrophages were also challenged with B . pinnipedialis reference strain (NCTC 12890) from harbor seal ( Phoca vitulina ), B . ceti reference strain (NCTC 12891) from harbor porpoise ( Phocoena phocoena ) and a B . ceti Atlantic white-sided dolphin ( Lagenorhynchus acutus ) isolate (M83/07/1), to evaluate possible species-specific differences. Brucella suis 1330 was included as a positive control. Alveolar macrophages were obtained by post mortem bronchoalveolar lavage of euthanized hooded seals. Phenotyping of cells in the lavage fluid was executed by flow cytometry using the surface markers CD14 and CD18. Cultured lavage cells were identified as alveolar macrophages based on morphology, expression of surface markers and phagocytic ability. Alveolar macrophages were challenged with Brucella spp. in a gentamicin protection assay. Following infection, cell lysates from different time points were plated and evaluated quantitatively for colony forming units. Intracellular presence of B . pinnipedialis hooded seal isolate was verified by immunocytochemistry. Our results show that the marine mammal brucellae were able to enter hooded seal alveolar macrophages; however, they did not multiply intracellularly and were eliminated within 48 hours, to the contrary of B. suis that showed the classical pattern of a pathogenic strain. In conclusion, none of the four marine mammal strains tested were able to establish a persistent infection in primary alveolar macrophages from hooded seal.  相似文献   

5.
Brucella is an expanding genus of major zoonotic pathogens, including at least 10 genetically very close species occupying a wide range of niches from soil to wildlife, livestock, and humans. Recently, we have shown that in the new species Brucella microti, the glutamate decarboxylase (Gad)-dependent system (GAD system) contributes to survival at a pH of 2.5 and also to infection in mice by the oral route. In order to study the functionality of the GAD system in the genus Brucella, 47 isolates, representative of all known species and strains of this genus, and 16 strains of the closest neighbor genus, Ochrobactrum, were studied using microbiological, biochemical, and genetic approaches. In agreement with the genome sequences, the GAD system of classical species was not functional, unlike that of most strains of Brucella ceti, Brucella pinnipedialis, and newly described species (B. microti, Brucella inopinata BO1, B. inopinata-like BO2, and Brucella sp. isolated from bullfrogs). In the presence of glutamate, these species were more acid resistant in vitro than classical terrestrial brucellae. Expression in trans of the gad locus from representative Brucella species in the Escherichia coli MG1655 mutant strain lacking the GAD system restored the acid-resistant phenotype. The highly conserved GAD system of the newly described or atypical Brucella species may play an important role in their adaptation to acidic external and host environments. Furthermore, the GAD phenotype was shown to be a useful diagnostic tool to distinguish these latter Brucella strains from Ochrobactrum and from classical terrestrial pathogenic Brucella species, which are GAD negative.  相似文献   

6.

Background

MALDI-TOF mass spectrometry (MS) is a reliable method for bacteria identification. Some databases used for this purpose lack reference profiles for Brucella species, which is still an important pathogen in wide areas around the world. We report the creation of profiles for MALDI-TOF Biotyper 2.0 database (Bruker Daltonics, Germany) and their usefulness for identifying brucellae from culture plates and blood cultures.

Methodology/Principal Findings

We created MALDI Biotyper 2.0 profiles for type strains belonging to B. melitensis biotypes 1, 2 and 3; B. abortus biotypes 1, 2, 5 and 9; B. suis, B. canis, B ceti and B. pinnipedialis. Then, 131 clinical isolates grown on plate cultures were used in triplicate to check identification. Identification at genus level was always correct, although in most cases the three replicates reported different identification at species level. Simulated blood cultures were performed with type strains belonging to the main human pathogenic species (B. melitensis, B. abortus, B. suis and B. canis), and studied by MALDI-TOF MS in triplicate. Identification at genus level was always correct.

Conclusions/Significance

MALDI-TOF MS is reliable for Brucella identification to the genus level from culture plates and directly from blood culture bottles.  相似文献   

7.
Although Brucella frequently infects humans through inhalation, its interaction with pulmonary cells has been overlooked. We examined whether human lung epithelial cells produce proinflammatory mediators in response to Brucella infection. Infection with smooth or rough strains of Brucella abortus induced the secretion of IL-8 and GM-CSF by the bronchial epithelial cell lines Calu-6 and 16HBE14o-, but not by the alveolar epithelial cell line A549. Infected Calu-6 cells also produced low levels of MCP-1. Since monocyte-derived cytokines may induce chemokine secretion in epithelial cells, cocultures of human monocytes (THP-1 cell line) and respiratory epithelial cells were used to study such interaction. IL-8 and MCP-1 levels in B. abortus-infected THP-1:A549 and THP-1:Calu-6 cocultures, and MCP-1 levels in THP-1:16HBE14o- cocultures, were higher than those detected in infected epithelial monocultures. Conditioned medium from infected monocytes induced the secretion of IL-8 and/or MCP-1 by A549 and Calu-6 cells, and these effects were mainly mediated by IL-1 (in A549 cells) or TNF-α (in Calu-6 cells). Conversely, culture supernatants from Brucella-infected bronchial epithelial cells induced MCP-1 production by monocytes, an effect largely mediated by GM-CSF. This study shows that human lung epithelial cells mount a proinflammatory response to Brucella, either directly or after interaction with Brucella-infected monocytes.  相似文献   

8.
Brucellosis is a zoonosis caused by bacteria of the genus Brucella, which includes nine species: B. melitensis (goats and sheep as the main reservoir hosts), B. abortus (cattle), B. suis (pigs), B. neotomae (desert woodrats), B. ovis (sheep), B. canis (dogs), B. ceti (whales), B. pinnipedialis (pinnipeds), and B. microti (Microtus voles). The epidemic and epizootic situation with brucellosis is accounted for by farm animals, which are the carriers of three main pathogens (B. melitensis, B. abortus, and B. suis). Their ubiquitous distribution is the factor determining global prevalence of the above Brucella species on all continents and in the overwhelming majority of countries. Consistent with the expansion of the pathogen ecological range are the 1990s findings of new Brucella species in marine mammals (whales and pinnipeds) and in some rodents. These bacteria proved to be also pathogenic for terrestrial mammals and humans. All Brucella-infected animals considered in the paper are tentatively divided into two groups. The first includes most of the wild and domestic animal species, birds, and ticks that acquire the infection farm animals, the main hosts of Brucella. The second group includes animals (wild reindeer, hares, bison, and probably saiga antelopes, dogs, and marine mammals) which may carry Brucella regardless of infection prevalence in the main hosts.  相似文献   

9.
Outer membrane vesicles (OMVs) released by some Gram-negative bacteria have been shown to exert immunomodulatory effects that favor the establishment of the infection. The aim of the present study was to assess the interaction of OMVs from Brucella abortus with human epithelial cells (HeLa) and monocytes (THP-1), and the potential immunomodulatory effects they may exert. Using confocal microscopy and flow cytometry, FITC-labeled OMVs were shown to be internalized by both cell types. Internalization was shown to be partially mediated by clathrin-mediated endocytosis. Pretreatment of THP-1 cells with Brucella OMVs inhibited some cytokine responses (TNF-α and IL-8) to E. coli LPS, Pam3Cys or flagellin (TLR4, TLR2 and TLR5 agonists, respectively). Similarly, pretreatment with Brucella OMVs inhibited the cytokine response of THP-1 cells to B. abortus infection. Treatment of THP-1 cells with OMVs during IFN-γ stimulation reduced significantly the inducing effect of this cytokine on MHC-II expression. OMVs induced a dose-dependent increase of ICAM-1 expression on THP-1 cells and an increased adhesion of these cells to human endothelial cells. The addition of OMVs to THP-1 cultures before the incubation with live B. abortus resulted in increased numbers of adhered and internalized bacteria as compared to cells not treated with OMVs. Overall, these results suggest that OMVs from B. abortus exert cellular effects that promote the internalization of these bacteria by human monocytes, but also downregulate the innate immune response of these cells to Brucella infection. These effects may favor the persistence of Brucella within host cells.  相似文献   

10.

Background

Leptospirosis is caused by pathogenic spirochetes of the genus Leptospira. The bacteria enter the human body via abraded skin or mucous membranes and may disseminate throughout. In general the clinical picture is mild but some patients develop rapidly progressive, severe disease with a high case fatality rate. Not much is known about the innate immune response to leptospires during haematogenous dissemination. Previous work showed that a human THP-1 cell line recognized heat-killed leptospires and leptospiral LPS through TLR2 instead of TLR4. The LPS of virulent leptospires displayed a lower potency to trigger TNF production by THP-1 cells compared to LPS of non-virulent leptospires.

Methodology/Principal Findings

We investigated the host response and killing of virulent and non-virulent Leptospira of different serovars by human THP-1 cells, human PBMC''s and human whole blood. Virulence of each leptospiral strain was tested in a well accepted standard guinea pig model. Virulent leptospires displayed complement resistance in human serum and whole blood while in-vitro attenuated non-virulent leptospires were rapidly killed in a complement dependent manner. In vitro stimulation of THP-1 and PBMC''s with heat-killed and living leptospires showed differential serovar and cell type dependence of cytokine induction. However, at low, physiological, leptospiral dose, living virulent complement resistant strains were consistently more potent in whole blood stimulations than the corresponding non-virulent complement sensitive strains. At higher dose living virulent and non-virulent leptospires were equipotent in whole blood. Inhibition of different TLRs indicated that both TLR2 and TLR4 as well as TLR5 play a role in the whole blood cytokine response to living leptospires.

Conclusions/Significance

Thus, in a minimally altered system as human whole blood, highly virulent Leptospira are potent inducers of the cytokine response.  相似文献   

11.
Inhalation is a common route for Brucella infection. We investigated whether Brucella species can invade and replicate within alveolar (A549) and bronchial (Calu-6 and 16HBE14o-) human epithelial cells. The number of adherent and intracellular bacteria was higher for rough strains (Brucella canis and Brucella abortus RB51) than for smooth strains (B. abortus 2308 and Brucella suis 1330). Only smooth strains exhibited efficient intracellular replication (1.5–3.5 log increase at 24 h p.i.). A B. abortus mutant with defective expression of the type IV secretion system did not replicate. B. abortus internalization was inhibited by specific inhibitors of microfilaments, microtubules and PI3-kinase activity. As assessed with fluorescent probes, B. abortus infection did not affect the viability of A549 and 16HBE14o- cells, but increased the percentage of injured cells (both strains) and dead cells (RB51) in Calu-6 cultures. LDH levels were increased in supernatants of Calu-6 and 16HBE14o- cells infected with B. abortus RB51, and to a lower extent in Calu-6 infected with B. abortus 2308. No apoptosis was detected by TUNEL upon infection with smooth or rough B. abortus. This study shows that smooth brucellae can infect and replicate in human respiratory epithelial cells inducing minimal or null cytotoxicity.  相似文献   

12.

Background  

Brucella species include economically important zoonotic pathogens that can infect a wide range of animals. There are currently six classically recognised species of Brucella although, as yet unnamed, isolates from various marine mammal species have been reported. In order to investigate genetic relationships within the group and identify potential diagnostic markers we have sequenced multiple genetic loci from a large sample of Brucella isolates representing the known diversity of the genus.  相似文献   

13.
The present study was conducted to see the role of NF-κB in virulent (Mycobacterium tuberculosis H37Rv) and avirulent (M. tuberculosis H37Ra) mycobacterial infection in THP-1 cells. To inactivate NF-κB, pCMV-IκBαM dn containing THP-1 cell line was generated which showed marked increase in apoptosis with M. tuberculosis H37Rv and M. tuberculosis H37Ra. Infected THP-1-IκBαM dn cells showed decrease in mitochondrial membrane potential, cytochrome c release, activation of caspase-3 and enhanced TNF-α production. Increase in apoptosis of infected THP-1-IκBαM dn cells resulted in inhibition of intracellular mycobacterial growth. Differential NF-κB activation potential was observed with M. tuberculosis H37Rv and M. tuberculosis H37Ra. Both the strains activated NF-κB after 4 h in THP-1 cells however after 48 h only M. tuberculosis H37Rv activated NF-κB which lead to up-regulation of bcl-2 family anti-apoptotic member, bfl-1/A1. Our results indicated that NF-κB activation may be a determinant factor for the success of virulent mycobacteria within macrophages.  相似文献   

14.
Both CCL20 and human β-defensin 2 (hBD2) interact with the same membrane receptor and display chemotactic and antimicrobial activities. They are produced by airway epithelia in response to infectious agents and proinflammatory cytokines. Whereas Brucella spp. can infect humans through inhalation, their ability to induce CCL20 and hBD2 in lung cells is unknown. Here we show that B. abortus induces CCL20 expression in human alveolar (A549) or bronchial (Calu-6) epithelial cell lines, primary alveolar epithelial cells, primary human monocytes, monocyte-derived macrophages and the monocytic cell line THP-1. CCL20 expression was mainly mediated by JNK1/2 and NF-kB in both Calu-6 and THP-1 cells. CCL20 secretion was markedly induced in A549, Calu-6 and THP-1 cells by heat-killed B. abortus or a model Brucella lipoprotein (L-Omp19) but not by the B. abortus lipopolysaccharide (LPS). Accordingly, CCL20 production by B. abortus-infected cells was strongly TLR2-dependent. Whereas hBD2 expression was not induced by B. abortus infection, it was significantly induced in A549 cells by conditioned media from B. abortus-infected THP-1 monocytes (CMB). A similar inducing effect was observed on CCL20 secretion. Experiments using blocking agents revealed that IL-1β, but not TNF-α, was involved in the induction of hBD2 and CCL20 secretion by CMB. In the in vitro antimicrobial assay, the lethal dose (LD) 50 of CCL20 for B. abortus (>50 μg/ml) was markedly higher than that against E. coli (1.5 μg/ml) or a B. abortus mutant lacking the O polysaccharide in its LPS (8.7 ug/ml). hBD2 did not kill any of the B. abortus strains at the tested concentrations. These results show that human lung epithelial cells secrete CCL20 and hBD2 in response to B. abortus and/or to cytokines produced by infected monocytes. Whereas these molecules do not seem to exert antimicrobial activity against this pathogen, they could recruit immune cells to the infection site.  相似文献   

15.
The human THP-1 cell line is widely used as an in vitro model system for studying macrophage differentiation and function. Conventional culture conditions for these cells consist of ambient oxygen pressure (∼20% v/v) and medium supplemented with the thiol 2-mercaptoethanol (2-ME) and serum. In consideration of the redox activities of O2 and 2-ME, and the extensive experimental evidence supporting a role for reactive oxygen species (ROS) in the differentiation and function of macrophages, we addressed the question of whether culturing THP-1 cells under a more physiologically relevant oxygen tension (5% O2) in the absence of 2-ME and serum would alter THP-1 cell physiology. Comparisons of cultures maintained in 18% O2 versus 5% O2 indicated that reducing oxygen tension had no effect on the proliferation of undifferentiated THP-1 cells. However, decreasing the oxygen tension to 5% O2 significantly increased the rate of phorbol ester-induced differentiation of THP-1 cells into macrophage-like cells as well as the metabolic activity of both undifferentiated and PMA-differentiated THP-1 cells. Removal of both 2-ME and serum from the medium decreased the proliferation of undifferentiated THP-1 cells but increased metabolic activity and the rate of differentiation under either oxygen tension. In differentiated THP-1 cells, lowering the oxygen tension to 5% O2 decreased phagocytic activity, the constitutive release of β-hexosaminidase and LPS-induced NF-κB activation but enhanced LPS-stimulated release of cytokines. Collectively, these data demonstrate that oxygen tension influences THP-1 cell differentiation and primary macrophage functions, and suggest that culturing these cells under tightly regulated oxygen tension in the absence of exogenous reducing agent and serum is likely to provide a physiologically relevant baseline from which to study the role of the local redox environment in regulating THP-1 cell physiology.  相似文献   

16.
S. agalactiae (group B streptococci, GBS) is a major microbial pathogen in human neonates and causes invasive infections in pregnant women and immunocompromised individuals. The S. agalactiae β-hemolysin is regarded as an important virulence factor for the development of invasive disease. To examine the role of β-hemolysin in the interaction with professional phagocytes, the THP-1 monocytic cell line and human granulocytes were infected with a serotype Ia S. agalactiae wild type strain and its isogenic nonhemolytic mutant. We could show that the nonhemolytic mutants were able to survive in significantly higher numbers than the hemolytic wild type strain, in THP-1 macrophage-like cells and in assays with human granulocytes. Intracellular bacterial multiplication, however, could not be observed. The hemolytic wild type strain stimulated a significantly higher release of Tumor Necrosis Factor-α than the nonhemolytic mutant in THP-1 cells, while similar levels of the chemokine Interleukin-8 were induced. In order to investigate bacterial mediators of IL-8 release in this setting, purified cell wall preparations from both strains were tested and found to exert a potent proinflammatory stimulus on THP-1 cells. In conclusion, our results indicate that the β-hemolysin has a strong influence on the intracellular survival of S. agalactiae and that a tightly controlled regulation of β-hemolysin expression is required for the successful establishment of S. agalactiae in different host niches.  相似文献   

17.
This study, undertaken to compare the susceptibility of THP-1 cells and murine peritoneal macrophages to Leishmania peruviana amastigotes, obtained THP-1 infection with 10 parasites/cell compared to 2 parasites/murine macrophage. The parasite burden was maximal at 72 h post-infection (h.p.i.) for THP-1 cells, while it was still increasing at 120 h.p.i. for murine macrophages. Since in both cases the infection with L. peruviana affected cell viability, we recommend evaluating any leishmanicidal activity at 72 h.p.i. Amphotericin B reduced Leishmania infection by 50% at concentrations of 0.1 μM in THP-1 and murine macrophages at 72 h.p.i.Our results demonstrate that amastigotes of L. peruviana can infect THP-1 cells and murine macrophages and indicate the suitability of this model to screen compounds for leishmanicidal activity.  相似文献   

18.
Repressor activator protein 1 (Rap1) is essential for maintaining telomere length and structural integrity, but it also exerts other non-telomeric functions. The present study tested the hypothesis that Rap1 is released into the cytoplasm and induces production of pro-inflammatory cytokines via nuclear factor kappa B (NFκB) signaling in macrophages, a cell type involved in the development and progression of atherosclerotic lesions. Western blotting analysis confirmed that Rap1 was present in the cytoplasm of differentiated human monocytic leukemia cells (THP-1, a macrophage-like cell line). Co-immunoprecipitation assay revealed a direct interaction between Rap1 and I kappa B kinase (IKK). Knockdown of Rap1 suppressed lipopolysaccharide-mediated activation of NFκB, and phosphorylation of inhibitor of kappa B α (IκBα) and p65 in THP-1 macrophages. The reduction of NFκB activity was paralleled by a decreased production of NFκB-dependent pro-inflammatory cytokines and an increased expression of IκBα (native NFκB inhibitor) in various macrophage models with pro-inflammatory phenotype, including THP-1, mouse peritoneal macrophages and bone marrow-derived M1 macrophages. These changes were observed selectively in pro-inflammatory macrophages but not in bone marrow-derived M2 macrophages (with an anti-inflammatory phenotype), mouse lung endothelial cells, human umbilical vein endothelial cells or human aortic smooth muscle cells. Immunostaining revealed that Rap1 was localized mainly in macrophage-rich areas in human atherosclerotic plaques and that the presence of Rap1 was positively correlated with the advancement of the disease process. In pro-inflammatory macrophages, Rap1 promotes cytokine production via NFκB activation favoring a pro-inflammatory environment which may contribute to the development and progression of atherosclerosis.  相似文献   

19.
Brucellosis is an important zoonotic disease caused by different species of genus Brucella that are pathogenic for humans and a variety of animals. Accurate detection of Brucella spp. infection is important for control of disease. The aim of this study was to comparison of molecular genotyping of Brucella strains by Pulsed-field gel electrophoresis (PFGE) and polymerase chain reaction -Restriction Fragment Length Polymorphism (PCR-RFLP) techniques.Twenty- seven Brucella spp. were isolated from human and animal samples. The isolates identified by conventional microbiological methods and confirmed using PCR for amplification of omp2a gene. Molecular typing of Brucella strains carried out by PCR-RFLP after PstI and PFGE of chromosomal DNA after XbaI enzyme digestion. The omp2a gene PCR Products with different patterns of PCR-RFLP were sequenced.The omp2a gene amplification of all human and animal Brucella isolates were positive for 1100 bp fragment. By PCR-RFLP analysis two genotypes/patterns for human isolates and four genotypes for animal isolates were obtained. In PFGE analysis totally, 7 common clones/clusters and 3 single clones were obtained.The results of this study showed the PFGE method is the more reliable and useful assay for molecular typing of Brucella strains and is more preferred to PCR-RFLP in determination of genetic similarity among human and animal Brucella isolates. The presented data showed PCR-RFLP analysis was not able to differentiate between B. melitensis biovars and vaccine strain.  相似文献   

20.
Brucella ovis is a veterinary pathogen associated with epididymitis in sheep. Despite its genetic similarity to the zoonotic pathogens B. abortus, B. melitensis and B. suis, B. ovis does not cause zoonotic disease. Genomic analysis of the type strain ATCC25840 revealed a high percentage of pseudogenes and increased numbers of transposable elements compared to the zoonotic Brucella species, suggesting that genome degradation has occurred concomitant with narrowing of the host range of B. ovis. The absence of genomic island 2, encoding functions required for lipopolysaccharide biosynthesis, as well as inactivation of genes encoding urease, nutrient uptake and utilization, and outer membrane proteins may be factors contributing to the avirulence of B. ovis for humans. A 26.5 kb region of B. ovis ATCC25840 Chromosome II was absent from all the sequenced human pathogenic Brucella genomes, but was present in all of 17 B. ovis isolates tested and in three B. ceti isolates, suggesting that this DNA region may be of use for differentiating B. ovis from other Brucella spp. This is the first genomic analysis of a non-zoonotic Brucella species. The results suggest that inactivation of genes involved in nutrient acquisition and utilization, cell envelope structure and urease may have played a role in narrowing of the tissue tropism and host range of B. ovis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号