首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clostridium difficile toxinotypes are groups of strains defined by changes in the PaLoc region encoding two main virulence factors: toxins TcdA and TcdB. Currently, 24 variant toxinotypes (I-XXIV) are known, in addition to toxinotype 0 strains, which contain a PaLoc identical to the reference strain VPI 10463. Variant toxinotypes can also differ from toxinotype 0 strains in their toxin production pattern. The most-studied variant strains are TcdA-, TcdB+ (A-B+) strains and binary toxin CDT-producing strains. Variations in toxin genes are also conserved on the protein level and variant toxins can differ in size, antibody reactivity, pattern of intracellular targets (small GTPases) and consequently in their effects on the cell. Toxinotypes do not correlate with particular forms of disease or patient populations, but some toxinotypes (IIIb and VIII) are currently associated with disease of increased severity and outbreaks worldwide. Variant toxinotypes are very common in animal hosts and can represent from 40% to 100% of all isolates. Among human isolates, variant toxinotypes usually represent up to 10% of strains but their prevalence is increasing.  相似文献   

2.
The large clostridial cytotoxins (LCTs) constitute a group of high molecular weight clostridial cytotoxins that inactivate cellular small GTP-binding proteins. We demonstrate that a novel LCT (TcdB-1470) from Clostridium difficile strain 1470 is a functional hybrid between "reference" TcdB-10463 and Clostridium sordellii TcsL-1522. It bound to the same specific receptor as TcdB-10463 but glucosylated the same GTP-binding proteins as TcsL-1522. All three toxins had equal enzymatic potencies but were equally cytotoxic only when microinjected. When applied extracellularly TcdB-1470 and TcdB-10463 were considerably more potent cytotoxins than TcsL-1522. The small GTP-binding protein R-Ras was identified as a target for TcdB-1470 and also for TcsL-1522 but not for TcdB-10463. R-Ras is known to control integrin-extracellular matrix interactions from inside the cell. Its glucosylation may be a major determinant for the cell rounding and detachment induced by the two R-Ras-attacking toxins. In contrast, fibroblasts treated with TcdB-10463 were arborized and remained attached, with phosphotyrosine containing structures located at the cell-to-cell contacts and beta3-integrin remaining at the tips of cellular protrusions. These components were absent from cells treated with the R-Ras-inactivating toxins. The novel hybrid toxin will broaden the utility of the LCTs for clarifying the functions of several small GTPases, now including also R-Ras.  相似文献   

3.
Clostridium perfringens type B and D strains produce epsilon toxin (ETX), which is one of the most potent clostridial toxins and is involved in enteritis and enterotoxemias of domestic animals. ETX is produced initially as an inactive prototoxin that is typically then secreted and processed by intestinal proteases or possibly, for some strains, lambda toxin. During the current work a unique C. perfringens strain was identified that intracellularly processes epsilon prototoxin to an active form capable of killing MDCK cells. This activated toxin is not secreted but instead is apparently released upon lysis of bacterial cells entering stationary phase. These findings broaden understanding of the pathogenesis of type B and D infections by identifying a new mechanism of ETX activation.  相似文献   

4.
Clostridium difficile is a major enteropathogen of humans. It produces two main virulence factors, toxins A and B. A third, less well known toxin, C. difficile toxin (CDT), is a binary toxin composed of distinct enzymatic (CdtA) and cell binding/translocation (CdtB) proteins. We used a novel enzyme linked immunoassay (EIA) to detect CdtB protein in feces and culture fluids. Additionally, PCR was used to assay C. difficile isolates from fecal samples for the CDT locus (CdtLoc). Although the results from 80 isolates suggest no relationship between toxin concentrations in situ and in vitro, there is a good correlation between PCR detection of the cdtB gene and EIA detection of CdtB protein in vitro. Possible implications of the detection of CDT in patients are discussed.  相似文献   

5.
6.
Here we report the draft genome sequence of Clostridium difficile strain CD37, the first nontoxigenic strain sequenced. Every sequenced strain of Clostridium difficile has been shown to contain multiple different mobile genetic elements. The draft genome sequence of strain CD37 reveals the presence of two putative conjugative transposons.  相似文献   

7.
Background: Clostridium difficile is an important gastrointestinal pathogen of humans and animals. It has been isolated from various foods, including meat and ready‐to‐eat salads, and concern has been expressed regarding food as a possible source of human C. difficile infection (CDI). Aims: We sought to isolate C. difficile from a variety of vegetables obtained from local grocery stores and to characterize these isolates. Materials and Methods: Vegetables were purchased from 11 different grocery stores in Guelph, Ontario, Canada between May and August 2009. Enrichment culture was performed and isolates were characterized by ribotyping, PFGE, toxinotyping and PCR detection of toxin genes. Results: Clostridium difficile was isolated from 4.5% (5/111) of retail vegetables. Two different ribotypes and two different toxinotypes were identified. Three isolates were ribotype 078/NAP 7/toxinotype V, possessing all three toxin genes. The other two isolates shared a ribotype with a toxigenic strain previously found in humans with CDI in this region. Discussion: Contamination of vegetables was found at relatively low levels, however, all isolates were toxigenic and belonging to ribotypes previously associated with CDI. Conclusions: Contamination of vegetables with CDI‐associated isolates can occur and although the implications for food safety practices remain elusive, the presence of toxigenic isolates suggests vegetables could be a source of C. difficile in humans.  相似文献   

8.
Members of the Dr family of adhesins of Escherichia coli recognize as a receptor the Dr(a) blood-group antigen present on the complement regulatory and signalling molecule, decay-accelerating factor (DAF). One member of this family, the Dr haemagglutinin, also binds to a second receptor, type IV collagen. Structure/function information regarding these adhesins has been limited and domains directly involved in the interaction with DAF have not been determined. We devised a strategy to identify amino acids in the Dr haemagglutinin that are specifically involved in the interaction with DAF. The gene encoding the adhesive subunit, draE, was subjected to random mutagenesis and used to complement a strain defective for its expression. The resulting mutants were enriched and screened to obtain those that do not bind to DAF, but retain binding to type IV collagen. Individual amino acid changes at positions 10, 63, 65, 75, 77, 79 and 131 of the mature DraE sequence significantly reduced the ability of the DraE adhesin to bind DAF, but not collagen. Over half of the mutants obtained had substitutions within amino acids 63-81. Analysis of predicted structures of DraE suggest that these proximal residues may cluster to form a binding domain for DAF.  相似文献   

9.
10.
Clostridium difficile is a serious nosocomial pathogen whose prevalence worldwide is increasing. Postgenomic technologies can now be deployed to develop understanding of the evolution and diversity of this important human pathogen, yet little is known about the adaptive ability of C. difficile. We used iTRAQ labeling and 2D-LC-MS/MS driven proteomics to investigate the response of C. difficile 630 to a mild, but clinically relevant, heat stress. A statistically validated list of 447 proteins to which functional roles were assigned was generated, allowing reconstruction of central metabolic pathways including glycolysis, γ-aminobutyrate metabolism, and peptidoglycan biosynthesis. Some 49 proteins were significantly modulated under heat stress: classical heat shock proteins including GroEL, GroES, DnaK, Clp proteases, and HtpG were up-regulated in addition to several stress inducible rubrerythrins and proteins associated with protein modification, such as prolyl isomerases and proline racemase. The flagellar filament protein, FliC, was down-regulated, possibly as an energy conservation measure, as was the SecA1 preprotein translocase. The up-regulation of hydrogenases and various oxidoreductases suggests that electron flux across these pools of enzymes changes under heat stress. This work represents the first comparative proteomic analysis of the heat stress response in C. difficile strain 630, complementing the existing proteomics data sets and the single microarray comparative analysis of stress response. Thus we have a benchmark proteome for this pathogen, leading to a deeper understanding of its physiology and metabolism informed by the unique functional and adaptive processes used during a temperature upshift mimicking host pyrexia.  相似文献   

11.
The strict anaerobe Clostridium difficile is the most common cause of antibiotic-associated diarrhoea. The oxygen-resistant C. difficile spores play a central role in the infectious cycle, contributing to transmission, infection and recurrence. The spore surface layers, the coat and exosporium, enable the spores to resist physical and chemical stress. However, little is known about the mechanisms of their assembly. In this study, we characterized a new spore protein, CotL, which is required for the assembly of the spore coat. The cotL gene was expressed in the mother cell compartment under the dual control of the RNA polymerase sigma factors, σE and σK. CotL was localized in the spore coat, and the spores of the cotL mutant had a major morphologic defect at the level of the coat/exosporium layers. Therefore, the mutant spores contained a reduced amount of several coat/exosporium proteins and a defect in their localization in sporulating cells. Finally, cotL mutant spores were more sensitive to lysozyme and were impaired in germination, a phenotype likely to be associated with the structurally altered coat. Collectively, these results strongly suggest that CotL is a morphogenetic protein essential for the assembly of the spore coat in C. difficile.  相似文献   

12.
13.
Clostridium difficile causes one of the leading nosocomial infections in developed countries, and therapeutic choices are limited. Some strains of C. difficile produce phage tail-like particles upon induction of the SOS response. These particles have bactericidal activity against other C. difficile strains and can therefore be classified as bacteriocins, similar to the R-type pyocins of Pseudomonas aeruginosa. These R-type bacteriocin particles, which have been purified from different strains, each have a different C. difficile-killing spectrum, with no one bacteriocin killing all C. difficile isolates tested. We have identified the genetic locus of these “diffocins” (open reading frames 1359 to 1376) and have found them to be common among the species. The entire diffocin genetic locus of more than 20 kb was cloned and expressed in Bacillus subtilis, and this resulted in production of bactericidal particles. One of the interesting features of these particles is a very large structural protein of ∼200 kDa, the product of gene 1374. This large protein determines the killing spectrum of the particles and is likely the receptor-binding protein. Diffocins may provide an alternate bactericidal agent to prevent or treat infections and to decolonize individuals who are asymptomatic carriers.  相似文献   

14.
15.
《Anaerobe》1999,5(2):69-78
A bacteriophage specific for Clostridium difficile was examined for its ability to prevent ileocecitis in a hamster model. This species- and strain-specific bacteriophage was isolated from a lysogenic strain of C. difficile . Hamsters were maintained in sterile isolation cages to prevent the acquisition of C. difficile from the environment. Bicarbonate neutralization of gastric acidity was necessary for bacteriophage survival in the hamster's gastrointestinal tract. Bacteriophage recovery from the hamster cecum was 2×104plaque forming units/mL of cecal contents 24 h after orogastric challenge with 108plaque forming units/mL of bacteriophage. However, there was no bacteriophage recovery 48 h post challenge, indicating dissipation of bacteriophage from the hamster intestinal tract within this time frame. Twenty-four hours after being challenged with clindamycin, one group of hamsters was challenged with C. difficile followed by a single dose of bacteriophage (108plaque forming units/mL). Two additional groups of hamsters received phage doses immediately after C. difficile challenge and subsequently thereafter every 8 h up to 48 and 72 h, respectively. The gastric acidity was neutralized with bicarbonate buffer preceding every bacteriophage treatment. Control animals that received only clindamycin and C. difficile died within 96 h after challenge while the majority of bacteriophage treated hamsters survived. Two weeks after stopping bacteriophage treatment, the surviving hamsters were re-challenged with clindamycin and C. difficile . All the hamsters died within 96 h indicating susceptibility of the surviving hamsters to C. difficile disease in the absence of bacteriophage treatment.  相似文献   

16.
Clostridium difficile PCR ribotype 106 (also identified as restriction endonuclease analysis [REA] group DH) recently emerged as the most common strain causing C. difficile infection (CDI) among US adults. We previously identified this strain predominating our pediatric cohort. Pediatric clinical CDI isolates previously characterized by REA underwent antibiotic resistance testing and whole genome sequencing. Of 134 isolates collected from children, 31 (23%) were REA group DH. We performed a comparative genomics analysis to identify DH-associated accessory genes. We identified five DH-associated genes that are associated with virulence in other bacterial species but not previously known to contribute to CDI. These genes are associated with intestinal mucosal adhesion (collagen-binding surface protein), sporulation (sporulation integral membrane protein YtvI), and protection from oxidative stress and foreign DNA (DNA phosphorothioation-dependent restriction proteins, sulfurtransferase, and DNA sulfur modification proteins). The association of these genes was validated in a cohort of 623 publicly available C. difficile sequences, 10 (1.6%) of which were monophyletic to REA group DH through in silico multilocus sequence typing and core genome phylogenetic analysis. Further investigation is required to determine the contribution of these genes to the emergence and virulence of this epidemic strain.  相似文献   

17.
18.
A total of 154 patients admitted to an infectious diseases unit were included in a year''s prospective survey of sporadic diarrhoeal disease. Stools from 19 of them yielded Clostridium difficile, generally on more than one occasion. Twelve of these patients were assessed as having a severe or moderately severe gastrointestinal illness: Cl difficile was the only pathogen isolated from 10 of them, and two had an associated salmonella infection. Seven had had a recent course of antibiotics, but five had not taken antibiotics. Faeces from seven patients with moderate or mild gastrointestinal illness yielded Cl difficile, and two of these patients also had an associated salmonella infection. Two patients in this group had no antibiotic history. From these findings, the occurrence of C difficile in faeces could not be described as antibiotic-associated. Faecal Cl difficile cytotoxin was detected in only six patients, and generally at low levels. In such patients a more relevant pathogenic index might take account of the numbers of Cl difficile present and of their toxigenic potential.  相似文献   

19.
Clostridium difficile binary toxin (CDT) is an ADP-ribosyltransferase which is linked to enhanced pathogenesis of C. difficile strains. CDT has dual function: domain a (CDTa) catalyses the ADP-ribosylation of actin (enzymatic component), whereas domain b (CDTb) transports CDTa into the cytosol (transport component). Understanding the molecular mechanism of CDT is necessary to assess its role in C. difficile infection. Identifying amino acids that are essential to CDTa function may aid drug inhibitor design to control the severity of C. difficile infections. Here we report mutations of key catalytic residues within CDTa and their effect on CDT cytotoxicity. Rather than an all-or-nothing response, activity of CDTa mutants vary with the type of amino acid substitution; S345A retains cytotoxicity whereas S345Y was sufficient to render CDT non-cytotoxic. Thus CDTa cytotoxicity levels are directly linked to ADP-ribosyltransferase activity.  相似文献   

20.
Large clostridial glucosylating toxins (LCGTs) are produced by toxigenic strains of Clostridium difficile, Clostridium perfringens, Clostridium novyi and Clostridium sordellii. While most C. sordellii strains solely produce lethal toxin (TcsL), C. sordellii strain VPI9048 co‐produces both hemorrhagic toxin (TcsH) and TcsL. Here, the sequences of TcsH‐9048 and TcsL‐9048 are provided, showing that both toxins retain conserved LCGT features and that TcsL and TcsH are highly related to Toxin A (TcdA) and Toxin B (TcdB) from C. difficile strain VPI10463. The substrate profile of the toxins was investigated with recombinant LCGT transferase domains (rN) and a wide panel of small GTPases. rN‐TcsH‐9048 and rN‐TcdA‐10463 glucosylated preferably Rho‐GTPases but also Ras‐GTPases to some extent. In this respect, rN‐TcsH‐9048 and rN‐TcdA‐10463 differ from the respective full‐length TcsH‐9048 and TcdA‐10463, which exclusively glucosylate Rho‐GTPases. rN‐TcsL‐9048 and full length TcsL‐9048 glucosylate both Rho‐ and Ras‐GTPases, whereas rN‐TcdB‐10463 and full length TcdB‐10463 exclusively glucosylate Rho‐GTPases. Vero cells treated with full length TcsH‐9048 or TcdA‐10463 also showed glucosylation of Ras, albeit to a lower extent than of Rho‐GTPases. Thus, in vitro analysis of substrate spectra using recombinant transferase domains corresponding to the auto‐proteolytically cleaved domains, predicts more precisely the in vivo substrates than the full length toxins. Except for TcdB‐1470, all LCGTs evoked increased expression of the small GTPase RhoB, which exhibited cytoprotective activity in cells treated with TcsL isoforms, but pro‐apoptotic activity in cells treated with TcdA, TcdB, and TcsH. All LCGTs induced a rapid dephosphorylation of pY118‐paxillin and of pS144/141‐PAK1/2 prior to actin filament depolymerization indicating that disassembly of focal adhesions is an early event leading to the disorganization of the actin cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号