首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 433 毫秒
1.
Aromatic oligovalent glycosyl disulfides and some diglycosyl disulfides were tested against three different Trypanosoma cruzi strains. Di-(β-d-galactopyranosyl-dithiomethylene) benzenes 2b and 4b proved to be the most active derivatives against all three strains of cell culture-derived trypomastigotes with IC50 values ranging from 4 to 11 μM at 37 °C. The inhibitory activities were maintained, although somewhat lowered, at a temperature of 4 °C as well. Three further derivatives displayed similar activities against at least one of the three strains. Low cytotoxicities of the active compounds, tested on confluent HeLa, Vero and peritoneal macrophage cell cultures, resulted in significantly higher selectivity indices (SI) than that of the reference drug benznidazole. Remarkably, several molecules of the tested panel strongly inhibited the parasite release from T. cruzi infected HeLa cell cultures suggesting an effect against the intracellular development of T. cruzi amastigotes as well.  相似文献   

2.
3.
We recently showed that oxadiazoles have anti-Trypanosoma cruzi activity at micromolar concentrations. These compounds are easy to synthesize and show a number of clear and interpretable structure–activity relationships (SAR), features that make them attractive to pursue potency enhancement. We present here the structural design, synthesis, and anti-T. cruzi evaluation of new oxadiazoles denoted 5ah and 6ah. The design of these compounds was based on a previous model of computational docking of oxadiazoles on the T. cruzi protease cruzain. We tested the ability of these compounds to inhibit catalytic activity of cruzain, but we found no correlation between the enzyme inhibition and the antiparasitic activity of the compounds. However, we found reliable SAR data when we tested these compounds against the whole parasite. While none of these oxadiazoles showed toxicity for mammalian cells, oxadiazoles 6c (fluorine), 6d (chlorine), and 6e (bromine) reduced epimastigote proliferation and were cidal for trypomastigotes of T. cruzi Y strain. Oxadiazoles 6c and 6d have IC50 of 9.5 ± 2.8 and 3.5 ± 1.8 μM for trypomastigotes, while Benznidazole, which is the currently used drug for Chagas disease treatment, showed an IC50 of 11.3 ± 2.8 μM. Compounds 6c and 6d impair trypomastigote development and invasion in macrophages, and also induce ultrastructural alterations in trypomastigotes. Finally, compound 6d given orally at 50 mg/kg substantially reduces the parasitemia in T. cruzi-infected BALB/c mice. Our drug design resulted in potency enhancement of oxadiazoles as anti-Chagas disease agents, and culminated with the identification of oxadiazole 6d, a trypanosomicidal compound in an animal model of infection.  相似文献   

4.
In this study we have examined certain aspects of the process of cell invasion and parasitophorous vacuole escape by metacyclic trypomastigotes and extracellular amastigote forms of Trypanosoma cruzi (G strain). Using Vero (and HeLa) cells as targets, we detected differences in the kinetics of vacuole escape by the two forms. Alcalinization of intercellular pH influenced both invasion as well as the escape from the parasitophorous vacuole by metacyclic trypomastigotes, but not the escape kinetics of extracellular amastigotes. We used sialic acid mutants as target cells and observed that the deficiency of this molecule facilitated the escape of both infective forms. Hemolysin activity was only detected in extracellular amastigotes and neither form presented detectable transialidase activity. Invasion of extracellular amastigotes and trypomastigotes in Vero cells was affected in different ways by drugs that interfere with host cell Ca2+ mobilization. These results are in line with previous results that indicate that metacyclic trypomastigotes and extracellular amastigote forms utilize mechanisms with particular features to invade host cells and to escape from their parasitophorous vacuoles.  相似文献   

5.
6.

Background

P21 is a secreted protein expressed in all developmental stages of Trypanosoma cruzi. The aim of this study was to determine the effect of the recombinant protein based on P21 (P21-His6) on inflammatory macrophages during phagocytosis.

Findings

Our results showed that P21-His6 acts as a phagocytosis inducer by binding to CXCR4 chemokine receptor and activating actin polymerization in a way dependent onthe PI3-kinase signaling pathway.

Conclusions

Thus, our results shed light on the notion that native P21 is a component related to T. cruzi evasion from the immune response and that CXCR4 may be involved in phagocytosis. P21-His6 represents an important experimental control tool to study phagocytosis signaling pathways of different intracellular parasites and particles.  相似文献   

7.
A liquid medium containing a high concentration of water-soluble vitamins and ATP was developed for serial cultivation of Trypanosoma cruzi at 27–37 C; fetal bovine serum and trypticase were the only undefined substances in this medium. At 27 C, Trypanosoma cruzi grows primarily (over 99%) as epimastigotes with a population density reaching 92.7 × 106/ml after 12 days of incubation. During the first subculture at 37 C, many epimastigotes from the original inocula changed into metacyclic trypomastigotes after 48 hr; the trypomastigotes subsequently transformed into amastigotes by 96 hr. In the second passage at 48 hr, 57.8% of the organisms were trypomastigotes which changed into amastigotes by the end of the incubation period. The proportion of amastigotes in the third and subsequent passages increased steadily as the proportion of epimastigotes gradually diminished. Amastigotes thus obtained could be serially subcultured indefinitely, yielding population densities of over 3.0 × 107/ml of medium in 4–5 days at 37 C. Available evidence indicates that these amastigotes are morphologically and physiologically similar to intracellular amastigotes.  相似文献   

8.
Oral infection by Trypanosoma cruzi has been the primary cause of recent outbreaks of acute Chagas'' diseases. This route of infection may involve selective binding of the metacyclic trypomastigote surface molecule gp82 to gastric mucin as a first step towards invasion of the gastric mucosal epithelium and subsequent systemic infection. Here we addressed that question by performing in vitro and in vivo experiments. A recombinant protein containing the complete gp82 sequence (J18), a construct lacking the gp82 central domain (J18*), and 20-mer synthetic peptides based on the gp82 central domain, were used for gastric mucin binding and HeLa cell invasion assays, or for in vivo experiments. Metacyclic trypomastigotes and J18 bound to gastric mucin whereas J18* failed to bind. Parasite or J18 binding to submaxillary mucin was negligible. HeLa cell invasion by metacyclic forms was not affected by gastric mucin but was inhibited in the presence of submaxillary mucin. Of peptides tested for inhibition of J18 binding to gastric mucin, the inhibitory peptide p7 markedly reduced parasite invasion of HeLa cells in the presence of gastric mucin. Peptide p7*, with the same composition as p7 but with a scrambled sequence, had no effect. Mice fed with peptide p7 before oral infection with metacyclic forms developed lower parasitemias than mice fed with peptide p7*. Our results indicate that selective binding of gp82 to gastric mucin may direct T. cruzi metacyclic trypomastigotes to stomach mucosal epithelium in oral infection.  相似文献   

9.

Background

The palmitate analogue 2-bromopalmitate (2-BP) is a non-selective membrane tethered cysteine alkylator of many membrane-associated enzymes that in the last years emerged as a general inhibitor of protein S-palmitoylation. Palmitoylation is a post-translational protein modification that adds palmitic acid to a cysteine residue through a thioester linkage, promoting membrane localization, protein stability, regulation of enzymatic activity, and the epigenetic regulation of gene expression. Little is known on such important process in the pathogenic protozoan Trypanosoma cruzi, the etiological agent of Chagas disease.

Results

The effect of 2-BP was analyzed on different developmental forms of Trypanosoma cruzi. The IC50/48 h value for culture epimastigotes was estimated as 130 μM. The IC50/24 h value for metacyclic trypomastigotes was 216 nM, while for intracellular amastigotes it was 242 μM and for cell derived trypomasigotes was 262 μM (IC50/24 h). Our data showed that 2-BP altered T. cruzi: 1) morphology, as assessed by bright field, scanning and transmission electron microscopy; 2) mitochondrial membrane potential, as shown by flow cytometry after incubation with rhodamine-123; 3) endocytosis, as seen after incubation with transferrin or albumin and analysis by flow cytometry/fluorescence microscopy; 4) in vitro metacyclogenesis; and 5) infectivity, as shown by host cell infection assays. On the other hand, lipid stress by incubation with palmitate did not alter epimastigote growth, metacyclic trypomastigotes viability or trypomastigote infectivity.

Conclusion

Our results indicate that 2-BP inhibits key cellular processes of T. cruzi that may be regulated by palmitoylation of vital proteins and suggest a metacyclic trypomastigote unique target dependency during the parasite development.
  相似文献   

10.
《Phytomedicine》2014,21(5):676-681
Leishmaniasis and Chagas disease are infectious diseases caused by parasite Leishmania sp. and Trypanosoma cruzi, respectively, and are included among the most neglected diseases in several underdeveloped and developing countries, with an urgent demand for new drugs. Considering the antiparasitic potential of MeOH extract from leaves of Casearia sylvestris Sw. (Salicaceae), a bioguided fractionation was conducted and afforded four active clerodane diterpenes (casearins A, B, G, and J). The obtained results indicated a superior efficacy of tested casearins against trypomastigotes of T. cruzi, with IC50 values ranging from 0.53 to 2.77 μg/ml. Leishmania infantum promastigotes were also susceptible to casearins, with IC50 values in a range between 4.45 and 9.48 μg/ml. These substances were also evaluated for mammalian cytotoxicity against NCTC cells resulting in 50% cytotoxic concentrations (CC50) ranging from 1.46 to 13.76 μg/ml. Additionally, the action of casearins on parasite membranes was investigated using the fluorescent probe SYTOX Green. The obtained results demonstrated a strong interaction of casearins A and B to the plasma membrane of T. cruzi parasites, corroborating their higher efficacy against these parasites. In contrast, the tested casearins induced no alteration in the permeability of plasma membrane of Leishmania parasites, suggesting that biochemical differences between Leishmania and T. cruzi plasma membrane might have contributed to the target effect of casearins on trypomastigotes. Thus, considering the importance of studying novel and selective drug candidates against protozoans, casearins A, B, G, and J could be used as tools to future drug design studies.  相似文献   

11.
12.
Differentiation of Trypanosoma cruzi trypomastigotes to amastigotes inside myoblasts or in vitro, at low extracellular pH, in the presence of [3H]palmitic acid or [3H]inositol revealed differential labeling of inositolphosphoceramide and phosphatidylinositol, suggesting that a remodeling process takes place in both lipids. Using 3H-labeled inositolphosphoceramide and phosphatidylinositol as substrates, we demonstrated the association of at least five enzymatic activities with the membranes of amastigotes and trypomastigotes. These included phospholipase A1, phospholipase A2, inositolphosphoceramide-fatty acid hydrolase, acyltransferase, and a phospholipase C releasing either ceramide or a glycerolipid from the inositolphospholipids. These enzymes may be acting in remodeling reactions leading to the anchor of mature glycoproteins or glycoinositolphospholipids and helping in the transformation of the plasma membrane, a necessary step in the differentiation of slender trypomastigotes to round amastigotes. Synthesis of inositolphosphoceramide and particularly of glycoinositolphospholipids was inhibited by aureobasidin A, a known inhibitor of fungal inositolphosphoceramide synthases. The antibiotic impaired the differentiation of trypomastigotes at acidic pH, as indicated by an increased appearance of intermediate forms and a decreased expression of the Ssp4 glycoprotein, a characteristic marker of amastigote forms. Aureobasidin A was also toxic to differentiating trypomastigotes at acidic pH but not to trypomastigotes maintained at neutral pH. Our data suggest that inositolphosphoceramide is implicated in T. cruzi differentiation and that its metabolism could provide important targets for the development of antiparasitic therapies.  相似文献   

13.
《Process Biochemistry》2014,49(10):1718-1722
Serratia proteamaculans metalloprotease (SPP) was successfully secreted by a heterologous ABC protein exporter, the Pseudomonas fluorescens TliDEF, in recombinant host strains. Escherichia coli and P. fluorescens cells containing the SPP-encoding gene showed the extracellular protease activity only when the TliDEF-encoding gene cluster was coexpressed. Recombinant P. fluorescens produced an approximately 34.8-fold higher amount of extracellular SPP than did E. coli. The use of a more nutrient-rich medium and controlled dissolved oxygen conditions was effective in increasing SPP secretion in P. fluorescens batch fermentation (an 8.7-fold increase from 41.8 U/mL to 365.2 U/mL). Therefore, SPP, which could not be secreted without an ABC protein exporter, was produced in large quantities by applying the heterologous TliDEF exporter in P. fluorescens. The results also suggest that the use of the ABC protein exporter in P. fluorescens could be an efficient production platform for an industrially promising type I secretion pathway-dependent enzyme.  相似文献   

14.
The complement system is the main arm of the vertebrate innate immune system against pathogen infection. For the protozoan Trypanosoma cruzi, the causative agent of Chagas disease, subverting the complement system and invading the host cells is crucial to succeed in infection. However, little attention has focused on whether the complement system can effectively control T. cruzi infection. To address this question, we decided to analyse: 1) which complement pathways are activated by T. cruzi using strains isolated from different hosts, 2) the capacity of these strains to resist the complement-mediated killing at nearly physiological conditions, and 3) whether the complement system could limit or control T. cruzi invasion of eukaryotic cells. The complement activating molecules C1q, C3, mannan-binding lectin and ficolins bound to all strains analysed; however, C3b and C4b deposition assays revealed that T. cruzi activates mainly the lectin and alternative complement pathways in non-immune human serum. Strikingly, we detected that metacyclic trypomastigotes of some T. cruzi strains were highly susceptible to complement-mediated killing in non-immune serum, while other strains were resistant. Furthermore, the rate of parasite invasion in eukaryotic cells was decreased by non-immune serum. Altogether, these results establish that the complement system recognizes T. cruzi metacyclic trypomastigotes, resulting in killing of susceptible strains. The complement system, therefore, acts as a physiological barrier which resistant strains have to evade for successful host infection.  相似文献   

15.
In order to invade mammalian cells, Trypanosoma cruzi infective forms cause distinct rearrangements of membrane and host cell cytoskeletal components. Rho GTPases have been shown to regulate three separate signal transduction pathways, linking plasma membrane receptors to the assembly of distinct actin filament structures. Here, we examined the role of Rho GTPases on the interaction between different T. cruzi infective forms of strains from the two major phylogenetic lineages with nonpolarized MDCK cells transfected with different Rho GTPase constructs. We compared the infectivity of amastigotes isolated from infected cells (intracellular amastigotes) with forms generated from the axenic differentiation of trypomastigotes (extracellular amastigotes), and also with metacyclic trypomastigotes. No detectable effect of GTPase expression was observed on metacyclic trypomastigote invasion and parasites of Y and CL (T. cruzi II) strains invaded to similar degrees all MDCK transfectants, and were more infective than either G or Tulahuen (T. cruzi I) strains. Intracellular amastigotes were complement sensitive and showed very low infectivity towards the different transfectants regardless of the parasite strain. Complement-resistant T. cruzi I extracellular amastigotes, especially of the G strain, were more infective than T. cruzi II parasites, particularly for the Rac1V12 constitutively active GTPase transfectant. The fact that in Rac1N17 dominant-negative cells, the invasion of G strain extracellular amastigotes was specifically inhibited suggested an important role for Rac1 in this process.  相似文献   

16.
Heteroxenic and monoxenic trypanosomatids were screened for the presence of actin using a mouse polyclonal antibody produced against the entire sequence of the Trypanosoma cruzi actin gene, encoding a 41.9 kDa protein. Western blot analysis showed that this antibody reacted with a polypeptide of approximately 42 kDa in the whole-cell lysates of parasites targeting mammals (T. cruzi, Trypanosoma brucei and Leishmania major), insects (Angomonas deanei, Crithidia fasciculata, Herpetomonas samuelpessoai and Strigomonas culicis) and plants (Phytomonas serpens). A single polypeptide of approximately 42 kDa was detected in the whole-cell lysates of T. cruzi cultured epimastigotes, metacyclic trypomastigotes and amastigotes at similar protein expression levels. Confocal microscopy showed that actin was expressed throughout the cytoplasm of all the tested trypanosomatids. These data demonstrate that actin expression is widespread in trypanosomatids.  相似文献   

17.
The growth inhibitory effect on Trypanosoma cruzi epimastigotes and the unspecific cytotoxicity over NCTC-929 fibroblasts of two series of previously synthesized 2,4-diaryl-1,2,3,4-tetrahydroquinolines (THQ), have been studied in vitro and compared with those of benznidazole (BZ). Derivatives AR39, AR40, AR41, AR91 and DM15 achieved outstanding selectivity indexes (SI) on the extracellular form (SITHQ > SIBZ > 9.44) and thus, were tested in a more specific in vitro assay against amastigotes, showing less effectiveness than the reference drug (SIBZ > 320) but also accomplishing great selectivity on the intracellular stage (SITHQ > 25). These promising results, supported by the in silico prediction of high bioavailability and less potential risk than benznidazole, reveal several tetrahydroquinolines as prototypes of potential antichagasic drugs.  相似文献   

18.
19.

Background

The surface coat of Trypanosoma cruzi is predominantly composed of glycosylphosphatidylinositol-anchored proteins, which have been extensively characterized. However, very little is known about less abundant surface proteins and their role in host-parasite interactions.

Methodology/ Principal Findings

Here, we described a novel family of T. cruzi surface membrane proteins (TcSMP), which are conserved among different T. cruzi lineages and have orthologs in other Trypanosoma species. TcSMP genes are densely clustered within the genome, suggesting that they could have originated by tandem gene duplication. Several lines of evidence indicate that TcSMP is a membrane-spanning protein located at the cellular surface and is released into the extracellular milieu. TcSMP exhibited the key elements typical of surface proteins (N-terminal signal peptide or signal anchor) and a C-terminal hydrophobic sequence predicted to be a trans-membrane domain. Immunofluorescence of live parasites showed that anti-TcSMP antibodies clearly labeled the surface of all T. cruzi developmental forms. TcSMP peptides previously found in a membrane-enriched fraction were identified by proteomic analysis in membrane vesicles as well as in soluble forms in the T. cruzi secretome. TcSMP proteins were also located intracellularly likely associated with membrane-bound structures. We demonstrated that TcSMP proteins were capable of inhibiting metacyclic trypomastigote entry into host cells. TcSMP bound to mammalian cells and triggered Ca2+ signaling and lysosome exocytosis, events that are required for parasitophorous vacuole biogenesis. The effects of TcSMP were of lower magnitude compared to gp82, the major adhesion protein of metacyclic trypomastigotes, suggesting that TcSMP may play an auxiliary role in host cell invasion.

Conclusion/Significance

We hypothesized that the productive interaction of T. cruzi with host cells that effectively results in internalization may depend on diverse adhesion molecules. In the metacyclic forms, the signaling induced by TcSMP may be additive to that triggered by the major surface molecule gp82, further increasing the host cell responses required for infection.  相似文献   

20.
Lysosomal integral membrane protein 2 (LIMP-2, SCARB2) is directly linked to β-glucocerebrosidase enzyme (βGC) and mediates the transport of this enzyme from the Golgi complex to lysosomes. Active βGC cleaves the β-glycosidic linkages of glucosylceramide, an intermediate in the metabolism of sphingoglycolipids, generating ceramide. In this study we used mouse embryonic fibroblasts (MEFs) deficient for LIMP-2 and observed that these cells were more susceptible to infection by extracellular amastigotes of the protozoan parasite Trypanosoma cruzi when compared to wild-type (WT) fibroblasts. The absence of LIMP-2 decreases the activity of βGC measured in fibroblast extracts. Replacement of βGC enzyme in LIMP-2 deficient fibroblasts restores the infectivity indices to those of WT cells in T. cruzi invasion assays. Considering the participation of βGC in the production of host cell ceramide, we propose that T. cruzi extracellular amastigotes are more invasive to cells deficient in this membrane component. These results contribute to our understanding of the role of host cell lysosomal components in T. cruzi invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号