首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hemophilia A is an inherited bleeding disorder characterized by factor VIII deficiency. The basis for insufficient hemostasis lies within inadequate amplification of factor Xa production with the undersupplied factor VIII. We report on a young patient with critical aortic stenosis bearing all the clinical stigmata of severe hemophilia, in whom aortic valve replacement was performed with a tissue valve in order to avoid the need for long term anticoagulation.  相似文献   

2.
Biomechanics and Modeling in Mechanobiology - Ischemic mitral regurgitation (IMR), a frequent complication of myocardial infarction, is characterized by regurgitation of blood from the left...  相似文献   

3.
The bicuspid aortic valve (BAV) is associated with a high prevalence of calcific aortic valve disease (CAVD). Although abnormal hemodynamics has been proposed as a potential pathogenic contributor, the native BAV hemodynamic stresses remain largely unknown. Fluid-structure interaction models were designed to quantify the regional BAV leaflet wall-shear stress over the course of CAVD. Systolic flow and leaflet dynamics were computed in two-dimensional tricuspid aortic valve (TAV) and type-1 BAV geometries with different degree of asymmetry (10 and 16% eccentricity) using an arbitrary Lagrangian–Eulerian approach. Valvular performance and regional leaflet wallshear stress were quantified in terms of valve effective orifice area (EOA), oscillatory shear index (OSI) and temporal shear magnitude (TSM). The dependence of those characteristics on the degree of leaflet calcification was also investigated. The models predicted an average reduction of 49% in BAV peak-systolic EOA relative to the TAV. Regardless of the anatomy, the leaflet wall-shear stress was side-specific and characterized by high magnitude and pulsatility on the ventricularis and low magnitude and oscillations on the fibrosa. While the TAV and non-coronary BAV leaflets shared similar shear stress characteristics, the base of the fused BAV leaflet fibrosa exhibited strong abnormalities, which were modulated by the degree of calcification (6-fold, 10-fold and 16-fold TSM increase in the normal, mildly and severely calcified BAV, respectively, relative to the normal TAV). This study reveals the existence of major differences in wall-shear stress pulsatility and magnitude on TAV and BAV leaflets. Given the ability of abnormal fluid shear stress to trigger valvular inflammation, the results support the existence of a mechano-etiology of CAVD in the BAV.  相似文献   

4.
5.
Aortic valve stenosis: an active atheroinflammatory process   总被引:3,自引:0,他引:3  
PURPOSE OF REVIEW: To summarize the current understanding of the pathobiology of aortic valve stenosis and portray the major advances in this field. RECENT FINDINGS: Stenotic aortic valves are characterized by atherosclerosis-like lesions, consisting of activated inflammatory cells, including T lymphocytes, macrophages, and mast cells, and of lipid deposits, calcific nodules, and bone tissue. Active mediators of calcification and cells with osteoblast-like activity are present in diseased valves. Extracellular matrix remodeling, including collagen synthesis and elastin degradation by matrix metalloproteinases and cathepsins, contributes to leaflet stiffening. In experimental animals, hypercholesterolemia induces calcification and bone formation in aortic valves, which can be inhibited by statin treatment. The potential of statins to retard progression of aortic valve stenosis has also been recognized in clinical studies; however, further prospective trials are needed. Angiotensin II-forming enzymes are upregulated in stenotic valves. Angiotensin II may participate in profibrotic progression of aortic valve stenosis and may serve as a possible therapeutic target. SUMMARY: Recent findings regarding the interaction of inflammatory cells, lipids, mediators of calcification, and renin-angiotensin system in stenotic valves support the current opinion of aortic valve stenosis being an actively regulated disease, potentially amenable to targeted molecular therapy. Evidence from prospective clinical studies is eagerly awaited.  相似文献   

6.
Soft tissues, such as tendons, skin, arteries, or lung, are constantly subject to mechanical stresses in vivo. None more so than the aortic heart valve that experiences an array of forces including shear stress, cyclic pressure, strain, and flexion. Anisotropic biaxial cyclic stretch maintains valve homeostasis; however, abnormal forces are implicated in disease progression. The response of the valve endothelium to deviations from physiological levels has not been fully characterized. Here, we show the design and validation of a novel stretch apparatus capable of applying biaxial stretch to viable heart valve tissue, while simultaneously allowing for live en face endothelial cell imaging via confocal laser scanning microscopy (CLSM). Real-time imaging of tissue is possible while undergoing highly characterized mechanical conditions and maintaining the native extracellular matrix. Thus, it provides significant advantages over traditional cell culture or in vivo animal models. Planar biaxial tissue stretching with simultaneous live cell imaging could prove useful in studying the mechanobiology of any soft tissue.  相似文献   

7.
X-ray diffraction, i.r. absorption, and chemical analyses have been carried out on the mineral deposits of calcified human mitral valves and glutaraldehyde-preserved porcine aortic grafts. The mineral deposits isolated from highly calcified mitral valves and porcine aortic grafts are constituted of type B-carbonate apatite. Magnesium substituted beta-tricalcium phosphate is present, together with an apatitic phase similar to dahllite, in the ashes of poorly calcified mitral valves. The contraction of the unit cell of beta-tricalcium phosphate due to magnesium incorporation is compared with the variation of the lattice constants of synthetic beta-tricalcium phosphate at different degree of magnesium substitution for calcium. The results reveal the important role of magnesium on the calcification of human valves. In fact, the apatitic phase deposited at the beginning of the calcification process, when there is a high magnesium content, converts completely into beta-tricalcium phosphate by heat treatment at 1,000 degrees C. On the other hand, when the calcification becomes massive, magnesium content appears highly reduced, and the deposited apatitic phase is characterized by a high thermal stability.  相似文献   

8.
Bicuspid aortic valve (BAV) aortopathy remains of difficult clinical management due to its heterogeneity and further assessment of related aortic hemodynamics is necessary. The aim of this study was to assess systolic hemodynamic indexes and wall stresses in patients with diverse BAV phenotypes and dilated ascending aortas. The aortic geometry was reconstructed from patient-specific images while the aortic valve was generated based on patient-specific measurements. Physiologic material properties and boundary conditions were applied and fully coupled fluid-structure interaction (FSI) analysis were conducted. Our dilated aortic models were characterized by the presence of abnormal hemodynamics with elevated degrees of flow skewness and eccentricity, regardless of BAV morphotype. Retrograde flow was also present. Both features, predicted by flow angle and flow reversal ratios, were consistently higher than those reported for non-dilated aortas. Right-handed helical flow was present, as well as elevated wall shear stress (WSS) on the outer ascending aortic wall. Our results suggest that the abnormal flow associated with BAV may play a role in aortic enlargement and progress it further on already dilated aortas.  相似文献   

9.
We describe a new support structure for respiratory gas valves for use in exercise studies. Use of this structure largely avoids problems of large inertial reactions and feelings of confinement on the part of the subject which have characterized previous systems. The support mechanism consists of a spring-reacted, pivoted boom carried on the end of a counterbalanced swinging beam. This device was designed for use on an adjustable slope motor-driven treadmill, but may be adapted to a variety of other experimental arrangements.  相似文献   

10.
11.
Abstract

The secondary lymphatic valve is a bi-leaflet structure frequent throughout collecting vessels that serves to prevent retrograde flow of lymph. Despite its vital function in lymph flow and apparent importance in disease development, the lymphatic valve and its associated fluid dynamics have been largely understudied. The goal of this work was to construct a physiologically relevant computational model of an idealized rat mesenteric lymphatic valve using fully coupled fluid-structure interactions to investigate the relationship between three-dimensional flow patterns and stress/deformation within the valve leaflets. The minimum valve resistance to flow, which has been shown to be an important parameter in effective lymphatic pumping, was computed as 268?g/mm4?s. Hysteretic behavior of the lymphatic valve was confirmed by comparing resistance values for a given transvalvular pressure drop during opening and closing. Furthermore, eddy structures were present within the sinus adjacent to the valve leaflets in what appear to be areas of vortical flow; the eddy structures were characterized by non-zero velocity values (up to ~4?mm/s) in response to an applied unsteady transvalvular pressure. These modeling capabilities present a useful platform for investigating the complex interplay between soft tissue motion and fluid dynamics of lymphatic valves and contribute to the breadth of knowledge regarding the importance of biomechanics in lymphatic system function.  相似文献   

12.
We provide a computational comparison of the performance of stentless and stented aortic prostheses, in terms of aortic root displacements and internal stresses. To this aim, we consider three real patients; for each of them, we draw the two prostheses configurations, which are characterized by different mechanical properties and we also consider the native configuration. For each of these scenarios, we solve the fluid–structure interaction problem arising between blood and aortic root, through Finite Elements. In particular, the Arbitrary Lagrangian–Eulerian formulation is used for the numerical solution of the fluid-dynamic equations and a hyperelastic material model is adopted to predict the mechanical response of the aortic wall and the two prostheses. The computational results are analyzed in terms of aortic flow, internal wall stresses and aortic wall/prosthesis displacements; a quantitative comparison of the mechanical behavior of the three scenarios is reported. The numerical results highlight a good agreement between stentless and native displacements and internal wall stresses, whereas higher/non-physiological stresses are found for the stented case.  相似文献   

13.
14.
Myxomatous mitral valve disease (MMVD) is the most common heart disease in dogs. It is characterized by chronic progressive degenerative lesions of the mitral valve. The valve leaflets become thickened and prolapse into the left atrium resulting in mitral regurgitation (MR). MMVD is most prevalent in small to medium sized dog breeds, Cavalier King Charles Spaniels (CKCS) in particular. The onset of MMVD is highly age dependent, and at the age of 10 years, nearly all CKCS are affected. The incidence of a similar disease in humans-mitral valve prolapse-is 1-5%. By defining CKCSs with an early onset of MMVD as cases and old dogs with no or mild signs of MMVD as controls, we conducted a genome-wide association study (GWAS) to identify loci associated with development of MMVD. We have identified a 1.58 Mb region on CFA13 (P(genome) = 4.0 × 10(-5)) and a 1.68 Mb region on CFA14 (P(genome) = 7.9 × 10(-4)) associated with development of MMVD. This confirms the power of using the dog as a model to uncover potential candidate regions involved in the molecular mechanisms behind complex traits.  相似文献   

15.
The asymmetric, elliptical shape of a transcatheter aortic valve (TAV), after implantation into a calcified aortic root, has been clinically observed. However, the impact of elliptical TAV configuration on TAV leaflet stress and strain distribution and valve regurgitation is largely unknown. In this study, we developed computational models of elliptical TAVs based on a thin pericardial bioprosthetic valve model recently developed. Finite element and computational fluid dynamics simulations were performed to investigate TAV leaflet structural deformation and central backflow leakage, and compared with those of a nominal symmetric TAV. From the results, we found that for a distorted TAV with an elliptical eccentricity of 0.68, the peak stress increased significantly by 143% compared with the nominal circular TAV. When the eccentricity of an elliptical TAV was larger than 0.5, a central backflow leakage was likely to occur. Also, deployment of a TAV with a major calcified region perpendicular to leaflet coaptation line was likely to cause a larger valve leakage. In conclusion, the computational models of elliptical TAVs developed in this study could improve our understanding of the biomechanics involved in a TAV with an elliptical configuration and facilitate optimal design of next-generation TAV devices.  相似文献   

16.
The biosynthesis of secondary metabolites is closely linked to primary metabolism via the supply of precursors, cofactors, and cellular energy. The availability of these precursors and cofactors can potentially be rate-limiting for secondary metabolism. A combined experimental and kinetic modeling approach was used to examine the regulation of flux in the cephamycin biosynthetic pathway in Streptomyces clavuligerus. The kinetic parameters of lysine 6-aminotransferase (LAT), the first enzyme leading to cephamycin biosynthesis and one which was previously identified as being a rate-limiting enzyme, were characterized. LAT converts lysine to alpha-aminoadipic acid using alpha-ketoglutarate as a cosubstrate. The K(m) values for lysine and alpha-ketoglutarate were substantially higher than those for their intracellular concentrations, suggesting that lysine and alpha-ketoglutarate may play a key role in regulating the flux of cephamycin biosynthesis. The important role of this precursor/cosubstrate was supported by simulated results using a kinetic model. When the intracellular concentrations and high K(m) values were taken into account, the predicted intermediate concentration was similar to the experimental measurements. The results demonstrate the controlling roles that precursors and cofactors may play in the biosynthesis of secondary metabolites.  相似文献   

17.
PURPOSE OF REVIEW: Degenerative aortic valve stenosis is a common disease in the elderly, and traditional risk factors for atherosclerotic disease including hyperlipidaemia have been associated with the condition in several studies. This review addresses the role of the various risk factors and the potential for intervention. RECENT FINDINGS: The association of lipid abnormalities such as high lipoprotein(a) levels and the presence of the apolipoprotein E4 allele with aortic stenosis, as well as the presence of several inflammatory markers both in plasma and in surgically excised valves, suggest that the stenotic process is driven by many of the same factors behind atherosclerosis. The aortic valves of animals fed a cholesterol-rich diet exhibit many characteristics in common with the early stages of aortic stenosis. This opens up the potential of retarding the process through intervention strategies. SUMMARY: Hyperlipidaemia is associated with degenerative aortic valve stenosis, and the disease resembles the inflammatory process of atherosclerosis. Randomized controlled clinical trials will be needed to demonstrate the role of lipid intervention in patients with this condition.  相似文献   

18.
Cardiac valve leaflets develop from rudimentary structures termed endocardial cushions. These pre-valve tissues arise from a complex interplay of signals between the myocardium and endocardium whereby secreted cues induce the endothelial cells to transform into migratory mesenchyme through an endothelial to mesenchymal transformation (EMT). Even though much is currently known regarding the initial EMT process, the mechanisms by which these undifferentiated cushion mesenchymal tissues are remodeled “post-EMT” into mature fibrous valve leaflets remains one of the major, unsolved questions in heart development. Expression analyses, presented in this report, demonstrate that periostin, a component of the extracellular matrix, is predominantly expressed in post-EMT valve tissues and their supporting apparatus from embryonic to adult life. Analyses of periostin gene targeted mice demonstrate that it is within these regions that significant defects are observed. Periostin null mice exhibit atrial septal defects, structural abnormalities of the AV valves and their supporting tensile apparatus, and aberrant differentiation of AV cushion mesenchyme. Rescue experiments further demonstrate that periostin functions as a hierarchical molecular switch that can promote the differentiation of mesenchymal cells into a fibroblastic lineage while repressing their transformation into other mesodermal cell lineages (e.g. myocytes). This is the first report of an extracellular matrix protein directly regulating post-EMT AV valve differentiation, a process foundational and indispensable for the morphogenesis of a cushion into a leaflet.  相似文献   

19.
Around 250,000 heart valve replacements are performed every year around the world. Due their higher durability, approximately 2/3 of these replacements use mechanical prosthetic heart valves (mainly bileaflet valves). Although very efficient, these valves can be subject to valve leaflet malfunctions. These malfunctions are usually the consequence of pannus ingrowth and/or thrombus formation and represent serious and potentially fatal complications. Hence, it is important to investigate the flow field downstream of a dysfunctional mechanical heart valve to better understand its impact on blood components (red blood cells, platelets and coagulation factors) and to improve the current diagnosis techniques. Therefore, the objective of this study will be to numerically and experimentally investigate the pulsatile turbulent flow downstream of a dysfunctional bileaflet mechanical heart valve in terms of velocity field, vortex formation and potential negative effect on blood components. The results show that the flow downstream of a dysfunctional valve was characterized by abnormally elevated velocities and shear stresses as well as large scale vortices. These characteristics can predispose to blood components damage. Furthermore, valve malfunction led to an underestimation of maximal transvalvular pressure gradient, using Doppler echocardiography, when compared to numerical results. This could be explained by the shifting of the maximal velocity towards the normally functioning leaflet. As a consequence, clinicians should try, when possible, to check the maximal velocity position not only at the central orifice but also through the lateral orifices. Finding the maximal velocity in the lateral orifice could be an indication of valve dysfunction.  相似文献   

20.
There is strong evidence that failure of bioprosthetic and synthetic valves occurs as a consequence of high tensile and bending stresses, acting on the leaflets during opening and closing. In stented prostheses, whether synthetic or biological, the absence of contraction of the aortic base causes the leaflets to be subjected to an unphysiological degree of flexure, which is also related to calcification. However, a stentless synthetic valve, which has a flexible aorta base, can be a good alternative for stented synthetic valves. Moreover, fiber-reinforcement is assumed to lead to a decrease of tears and perforation as a result of reduced stresses in the weaker parts of the leaflets in their closed configuration. The manufacturing method for a stentless, fiber-reinforced, synthetic valve is presented. Prototypes are tested in a pulse duplicator system. The results show that the mean systolic pressure difference is very low, while the high regurgitation (up to 26%) is probably caused by a too small coaptation area of the leaflets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号