首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By mediating tryptophan catabolism, the enzyme indoleamine 2,3-dioxygenase (IDO) has a complex role in immunoregulation in infection, pregnancy, autoimmunity, transplantation, and neoplasia. We hypothesized that IDO might affect the outcome of the infection in mice infected with Candida albicans by virtue of its potent regulatory effects on inflammatory and T cell responses. IDO expression was examined in mice challenged with the fungus along with the consequences of its blockade by in vivo treatment with an enzyme inhibitor. We found that IDO activity was induced at sites of infection as well as in dendritic cells and effector neutrophils via IFN-gamma- and CTLA-4-dependent mechanisms. IDO inhibition greatly exacerbated infection and associated inflammatory pathology as a result of deregulated innate and adaptive/regulatory immune responses. However, a role for tryptophan catabolism was also demonstrated in a fungus-autonomous fashion; its blockade in vitro promoted yeast-to-hyphal transition. These results provide novel mechanistic insights into complex events that, occurring at the fungus/pathogen interface, relate to the dynamics of host adaptation to the fungus. The production of IFN-gamma may be squarely placed at this interface, where IDO activation probably exerts a fine control over fungal morphology as well as inflammatory and adaptive antifungal responses.  相似文献   

2.
Indoleamine 2,3-dioxygenase (IDO) is the rate-limiting enzyme in conversion of tryptophan to kynurenines, feeding de novo nicotinamide synthesis. IDO orchestrates materno-foetal tolerance, increasing human reproductive fitness. IDO mediates immune suppression through depletion of tryptophan required by T lymphocytes and other mechanisms. IDO is expressed by alternatively activated macrophages, suspected to play a key role in tuberculosis (TB) pathogenesis. Unlike its human host, Mycobacterium tuberculosis can synthesize tryptophan, suggesting possible benefit to the host from infection with the microbe. Intriguingly, nicotinamide analogues are used to treat TB. In reviewing this field, it is postulated that flux through the nicotinamide synthesis pathway reflects switching between aerobic glycolysis and oxidative phosphorylation in M. tuberculosis-infected macrophages. The evolutionary cause of such shifts may be ancient mitochondrial behavior related to reproductive fitness. Evolutionary perspectives on the IDO pathway may elucidate why, after centuries of co-existence with the Tubercle bacillus, humans still remain susceptible to TB disease.  相似文献   

3.
4.
Pathogen persistence in immune-competent hosts represents an immunological paradox. Increasing evidence suggests that some pathogens, such as, Leishmania major (L. major) have evolved strategies and mechanisms that actively suppress host adaptive immunity. If this notion is correct conventional vaccination therapies may be ineffective in enhancing host immunity, unless natural processes that suppress host immunity are also targeted therapeutically. The key problem is that the basis of pathogen persistence in immune-competent individuals is unknown, despite decades of intense research. This fact, coupled with poor health care and a dearth of effective treatments means that these diseases will remain a scourge on humans unless a better understanding of why the immune system tolerates such infections emerges from research. Indoleamine 2,3-dioxygenase (IDO) has been shown to act as a molecular switch regulating host responses, and IDO inhibitor drugs shown to possess potential in enhancing host immunity to established leishmania infections. It is hoped that this review will help stimulate and help generate critical new knowledge pertaining to the IDO mechanism and how to exploit it to suppress T cell mediated immunity, thus offer an innovative approach to studying the basis of chronic leishmania infection in mice.  相似文献   

5.
Influenza infection stimulates protective host immune responses but paradoxically enhances lung indoleamine 2,3 dioxygenase (IDO) activity, an enzyme that suppresses helper/effector T cells and activates Foxp3-lineage regulatory CD4 T cells (Tregs). Influenza A/PR/8/34 (PR8) infection stimulated rapid elevation of IDO activity in lungs and lung-draining mediastinal lymph nodes (msLNs). Mice lacking intact IDO1 genes (IDO1-KO mice) exhibited significantly lower morbidity after sub-lethal PR8 infection, and genetic or pharmacologic IDO ablation led to much faster recovery after virus clearance. More robust influenza-specific effector CD8 T cell responses manifested in lungs of PR8-infected IDO1-KO mice, though virus clearance rates were unaffected by IDO ablation. Similar outcomes manifested in mice infected with a less virulent influenza A strain (X31). IDO induction in X31-infected lungs was dependent on IFN type II (IFNγ) signaling and was restricted to non-hematopoietic cells, while redundant IFN type 1 or type II signaling induced IDO exclusively in hematopoietic cells from msLNs. Memory T cells generated in X31-primed IDO1-KO mice protected mice from subsequent challenge with lethal doses of PR8 (100×LD50). However recall T cell responses were less robust in lung interstitial tissues, and classic dominance of TCR Vβ8.3 chain usage amongst memory CD8+ T cells specific for influenza nucleoprotein (NP366) did not manifest in IDO1-KO mice. Thus, influenza induced IDO activity in lungs enhanced morbidity, slowed recovery, restrained effector T cell responses in lungs and shaped memory T cell repertoire generation, but did not attenuate virus clearance during primary influenza A infection.  相似文献   

6.
Indoleamine 2,3-dioxygenase (IDO), which is mainly expressed in activated dendritic cells, is known as a regulator of immune responses. However, the role of IDO in immune responses against fungal corneal infection has not been investigated. To evaluate the regulatory mechanisms of IDO in fungal inflammation, we resorted to human corneal epithelial cells (HCECs), known as the first barrier of cornea against pathogenic microorganisms. We found that IDO was significantly up-regulated in corneal epithelium infected with Aspergillus fumigatus (A. fumigatus) and HCECs incubated with spores of A. fumigatus. Furthermore, IDO inhibitor (1-methyltryptophan, 1-MT) enhanced inflammatory cytokines IL-1β and IL-6 expression which were up-regulated by A. fumigatus spores infection. Dectin-1, as one of the important C-type lectin receptors, can identify β-glucan, and mediate fungal innate immune responses. In the present study, pre-treatment with curdlan, a Dectin-1 agonist, further enhanced IDO expression compared with A. fumigatus stimulation. While laminarin, the Dectin-1 specific inhibitor, partially inhibited IDO expression stimulated by A. fumigatus. Further studies demonstrated inhibition of IDO activity amplified the expressions of inflammatory cytokines IL-1β and IL-6 induced by activation of Dectin-1. These results suggested that IDO was involved in the immune responses of fungal keratitis. The activation of Dectin-1 may contribute to A. fumigatus spores-induced up-regulation of IDO.  相似文献   

7.
The tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase (IDO) is expressed in macrophages that have been differentiated in the presence of CSF-1 and is important in the containment of intracellular pathogens. IDO also appears to play a role in suppression of T cell responses in a variety of contexts. In the placenta, its enzymatic activity is believed to establish a chemical barrier that protects the fetal allograft from T cell-mediated immune aggression. We have studied the regulation of IDO in the utero-placental unit of mice following infection with the Gram-positive, intracellular bacterium Listeria monocytogenes that has a predilection for replication in the decidua basalis. IDO mRNA and protein expression is enhanced in the utero-placental unit following infection with L. monocytogenes. However, in contrast to the human where IDO is expressed by the CSF-1R-positive syncytial trophoblast, IDO is not expressed in murine trophoblastic tissue but instead is found in stromal cells of the decidua basalis and metrial gland and following infection, in endothelial cells. Using mice carrying null mutations in cytokine/growth factor genes, we explored the regulation of IDO in the placenta. Consistent with the absence of CSF-1R expression in the IDO-expressing cells of mice, neither the basal levels of IDO nor its induction following infection is affected by the absence of CSF-1. However, although the basal level of IDO is normal, the enhanced expression during Listeriosis is completely abrogated in the absence of IFN-gamma, a cytokine required for the resolution of this infection. These data suggest that IDO plays a role in resolving bacterial infection in the placenta while at the same time maintaining a barrier to T cells whose presence might result in fetal rejection.  相似文献   

8.
The regulation of local L-tryptophan concentrations by tryptophan-degrading enzyme, indoleamine 2,3-dioxygenase (IDO) induced by various stimuli such as interferon-γ (IFN-γ) is one of the key mechanisms in antimicrobial effect. Recently, IDO is also focused on an immunosuppressive mechanism shared by several different immune cell types. Here, we show that inhibition of increased IDO activity maybe involved in the antiparasitic mechanism during Toxoplasma gondii (T. gondii) infection in vivo. In this study, we investigated the role of IDO by using IDO-gene-deficient (IDO KO) mice and by administering a competitive enzyme inhibitor, 1-methyl-D,L-tryptophan (1MT), to wild-type mice following T. gondii infection. Although depletion of lung l-tryptophan did not occur in IDO KO mice after T. gondii infection, the increased mRNA expression of T. gondii surface antigen gene 2 (SAG2) and the inflammatory cytokines in the lung were drastically reduced in the IDO KO mice following infection. We also found that complete depletion of lung l-tryptophan was observed in wild-type mice after infection, but not in mice treated with 1MT. At the same time, 1MT suppressed the increased mRNA expression of SAG2. Taken together, we observed that the inflammatory damage was significantly decreased by the administration of 1MT in the lung after infection. Inhibition of the IDO activity or the elimination of IDO's substrate may be an effective therapy against microbial diseases.  相似文献   

9.
Indoleamine 2,3-dioxygenase (IDO) is induced by proinflammatory cytokines and by CTLA-4-expressing T cells and constitutes an important mediator of peripheral immune tolerance. In chronic hepatitis C, we found upregulation of IDO expression in the liver and an increased serum kynurenine/tryptophan ratio (a reflection of IDO activity). Huh7 cells supporting hepatitis C virus (HCV) replication expressed higher levels of IDO mRNA than noninfected cells when stimulated with gamma interferon or when cocultured with activated T cells. In infected chimpanzees, hepatic IDO expression decreased in animals that cured the infection, while it remained high in those that progressed to chronicity. For both patients and chimpanzees, hepatic expression of IDO and CTLA-4 correlated directly. Induction of IDO may dampen T-cell reactivity to viral antigens in chronic HCV infection.  相似文献   

10.
Indoleamine 2,3-dioxygenase (IDO) is a heme enzyme that initiates the oxidative degradation of the least abundant, essential amino acid, l-tryptophan, along the kynurenine pathway. The local cellular depletion of l-tryptophan that results may enable the host to inhibit the growth of various infectious pathogens in vivo. However, over the past decade, it has become increasingly apparent that IDO also represents an important immune control enzyme. Thus, cells expressing IDO, seemingly paradoxically, are capable of suppressing local T cell responses to promote immune tolerance under various physiological and pathophysiological conditions of medical importance, including infectious diseases, foetal rejection, organ transplantation, neuropathology, inflammatory and auto-immune disorders and cancer. In this review, we briefly outline the biochemical properties of IDO, its known and hypothetical functions and the medical implications for inhibition or induction of IDO and/or its downstream catabolites in health and disease.  相似文献   

11.
A novel series of o-phenylenediamine-based inhibitors of indoleamine 2,3-dioxygenase (IDO) has been identified. IDO is a heme-containing enzyme, overexpressed in the tumor microenvironment of many cancers, which can contribute to the suppression of the host immune system. Synthetic modifications to a previously described diarylether series resulted in an additional degree of molecular diversity which was exploited to afford compounds that demonstrated significant potency in the HeLa human cervical cancer IDO1 assay..  相似文献   

12.
Due to its strong immune stimulatory effects through TLR9, CpG-containing oligodeoxynucleotides (CpG ODN) have been tested in multiple clinical trials as vaccine adjuvant for infectious diseases and cancer. However, immune suppression induced by systemic administration of CpGs has been reported recently. In this study, we evaluated the impact of CpGs in an acute rickettsiosis model. We found that systemic treatment with type B CpG (CpG-B), but not type A CpG (CpG-A), at 2 days after sublethal R. australis infection induced mouse death. Although wild-type (WT) B6 and IDO(-/-) mice showed similar survival rates with three different doses of R. australis infection, treatment with CpG-B after sublethal infection consistently induced higher mortality with greater tissue bacterial loads in WT but not IDO(-/-) mice. Also, CpG-B treatment promoted the development of higher serum concentrations of proinflammatory cytokines/chemokines through IDO. Furthermore, while T cell-mediated immune responses enhanced by CpG-B were independent of IDO, treatment with CpG-B promoted T cell activation, PD-1 expression and cell apoptosis partially through IDO. A depletion study using anti-mPDCA-1 mAb indicated that plasmacytoid dendritic cells (pDC) were not required for CpG-B-induced death of R. australis-infected mice. Additionally, the results in iNOS(-/-) mice suggested that nitric oxide (NO) was partially involved in CpG-B-induced death of R. australis-infected mice. Surprisingly, pre-treatment with CpG-B before administration of a lethal dose of R. australis provided effective immunity in WT, IDO(-/-) and iNOS(-/-) mice. Taken together, our study provides evidence that CpGs exert complex immunological effects by both IDO-dependent and -independent mechanisms, and that systemic treatment with CpGs before or after infection has a significant and distinct impact on disease outcomes.  相似文献   

13.
14.
Tumor-derived immune suppression is a major impediment to successful immune/gene cancer therapy. In the present study, we describe a novel strategy to disrupt tumor-derived immune suppression by silencing a tolerogenic molecule of tumor origin, IDO, using small interfering RNA (siRNA). Silencing of IDO in B16F10 cells in vitro using IDO-siRNA prevented catabolism of tryptophan and inhibited apoptosis of T cells. IDO-siRNA treatment of B16F10 cells in vitro inhibited subsequent growth, tumor formation, and the size of tumor formed, by those cells when transplanted into host mice. In vivo treatment of B16F10 tumor-bearing mice successfully postponed tumor formation time and significantly decreased tumor size. Furthermore, in vivo IDO-siRNA treatment resulted in recovery of T cells responses and enhancement of tumor-specific killing. Thus, silencing IDO may break tumor-derived immune suppression. These data indicate that RNA interference has potential to enhance cancer therapy by reinstalling anticancer immunity.  相似文献   

15.
An immunohistochemical method was developed, using a polyclonal antibody, to detect the enzyme indoleamine 2,3-dioxygenase (IDO) in normal and malaria-infected tissue. Plasmodium berghei ANKA, a cerebral malaria (CM) model, and P. berghei K173, a non-cerebral malaria (NCM) model, were used. It was found that vascular endothelial cells were the primary site of IDO expression in both models of malaria infection and that this response was systemic, with the vascular endothelium of brain, heart, lung, spleen and uterus all staining positive. These results suggest that IDO is part of a systemic host response to parasite infection. Although high levels of IDO production alone may not cause pathology, it is possible that when its production is combined with other features of CM, such as breakdown of the blood-brain barrier (BBB), metabolites of the kynurenine pathway may be able to influence the otherwise tightly regulated, immunologically privileged site of the CNS and cause some of the symptoms and pathology observed.  相似文献   

16.
Abstract

An immunohistochemical method was developed, using a polyclonal antibody, to detect the enzyme indoleamine 2,3-dioxygenase (IDO) in normal and malaria-infected tissue. Plasmodium berghei ANKA, a cerebral malaria (CM) model, and P. berghei K173, a non-cerebral malaria (NCM) model, were used. It was found that vascular endothelial cells were the primary site of IDO expression in both models of malaria infection and that this response was systemic, with the vascular endothelium of brain, heart, lung, spleen and uterus all staining positive. These results suggest that IDO is part of a systemic host response to parasite infection. Although high levels of IDO production alone may not cause pathology, it is possible that when its production is combined with other features of CM, such as breakdown of the blood–brain barrier (BBB), metabolites of the kynurenine pathway may be able to influence the otherwise tightly regulated, immunologically privileged site of the CNS and cause some of the symptoms and pathology observed.  相似文献   

17.
Immune escape is a crucial feature of cancer progression about which little is known. Elevation of the immunomodulatory enzyme indoleamine 2,3-dioxygenase (IDO) in tumor cells can facilitate immune escape. Not known is how IDO becomes elevated or whether IDO inhibitors will be useful for cancer treatment. Here we show that IDO is under genetic control of Bin1, which is attenuated in many human malignancies. Mouse knockout studies indicate that Bin1 loss elevates the STAT1- and NF-kappaB-dependent expression of IDO, driving escape of oncogenically transformed cells from T cell-dependent antitumor immunity. In MMTV-Neu mice, an established breast cancer model, we show that small-molecule inhibitors of IDO cooperate with cytotoxic agents to elicit regression of established tumors refractory to single-agent therapy. Our findings suggest that Bin1 loss promotes immune escape in cancer by deregulating IDO and that IDO inhibitors may improve responses to cancer chemotherapy.  相似文献   

18.
Current understanding of key cellular pathways, which are activated by the interaction between T. cruzi and host immunity, is crucial for controlling T. cruzi infection and also for limiting the development of the immunopathological symptoms of Chagas´ disease. Here, we focus on recent advances in the knowledge of modulation of innate receptors such as TLRs and NLRs, especially NLRP3, by T. cruzi in different cells of the immune system. On the other hand, the modulation of macrophage activation may be instrumental in allowing parasite persistence and long-term host survival. In this sense, we discuss the importance of the metabolism of two amino acids: L-arginine and tryptophan, and evaluate the role of iNOS, arginase and IDO enzymes in the regulation of innate and adaptive immune response during this infection; and, finally, we also discuss how T. cruzi exploits the AhR, mTOR and Wnt signaling pathways to promote their intracellular replication in macrophages, thus evading the host's immune response.  相似文献   

19.

Background

Paracoccidioidomycosis, a primary fungal infection restricted to Latin America, is acquired by inhalation of fungal particles. The immunoregulatory mechanisms that control the severe and mild forms of paracoccidioidomycosis are still unclear. Indoleamine 2,3-dioxygenase (IDO), an IFN-γ induced enzyme that catalyzes tryptophan metabolism, can control host-pathogen interaction by inhibiting pathogen growth, T cell immunity and tissue inflammation.

Methodology/Principal Findings

In this study, we investigated the role of IDO in pulmonary paracoccidioidomycosis of susceptible and resistant mice. IDO was blocked by 1-methyl-dl-tryptophan (1MT), and fungal infection studied in vitro and in vivo. Paracoccidioides brasiliensis infection was more severe in 1MT treated than untreated macrophages of resistant and susceptible mice, concurrently with decreased production of kynurenines and IDO mRNA. Similar results were observed in the pulmonary infection. Independent of the host genetic pattern, IDO inhibition reduced fungal clearance but enhanced T cell immunity. The early IDO inhibition resulted in increased differentiation of dendritic and Th17 cells, accompanied by reduced responses of Th1 and Treg cells. Despite these equivalent biological effects, only in susceptible mice the temporary IDO blockade caused sustained fungal growth, increased tissue pathology and mortality rates. In contrast, resistant mice were able to recover the transitory IDO blockade by the late control of fungal burdens without enhanced tissue pathology.

Conclusions/Significance

Our studies demonstrate for the first time that in pulmonary paracoccidioidomycosis, IDO is an important immunoregulatory enzyme that promotes fungal clearance and inhibits T cell immunity and inflammation, with prominent importance to susceptible hosts. In fact, only in the susceptible background IDO inhibition resulted in uncontrolled tissue pathology and mortality rates. Our findings open new perspectives to understand the immunopathology of paracoccidioidomycosis, and suggest that an insufficient IDO activity could be associated with the severe cases of human PCM characterized by inefficient fungal clearance and excessive inflammation.  相似文献   

20.
IFN-gamma production is a hallmark of acute infection with the protozoan parasite Toxoplasma gondii. The tryptophan-catabolising enzyme indoleamine 2,3-dioxygenase (IDO), as well as inducible nitric oxide synthase (NOS2) are induced by IFN-gamma and can play extremely diverse roles in immune regulation, defence against pathogens and physiological homeostasis. We investigated the regulation of these two central enzymes in the placenta during acute infection of pregnant female mice. Using IFN-gamma receptor knockout (IFNgammaR-/-) mice, we showed that IDO is not constitutively expressed in term placentas. In contrast, NOS2 expression was observed, largely dependent on IFN-gamma signalling. Upon infection with the avirulent PRU strain of T. gondii, IDO mRNA expression was induced in an IFNgammaR-dependent manner. Surprisingly, NOS2 mRNA was severely suppressed. Importantly, we showed in crossing experiments of heterozygote (IFNgammaR+/-) mothers with IFNgammaR-/- males and vice versa that IDO expression largely depends on the presence of IFN-gamma receptors on foetal cells, and to a lesser extent on maternal cells. Immunohistochemical analysis localised foetal IDO production to invasive trophoblasts within the maternal part of the placenta. The placental vascular endothelium only stained positive when the mothers possessed functional IFN-gamma receptors. In contrast, placental NOS2 expression, but also its suppression following infection, seems to be largely dependent on IFN-gamma signalling in maternal cells. Neither factor appears to regulate placental T. gondii growth, as we observed no difference in parasite numbers between (+/-) and (-/-) foetuses. Taken together, our results demonstrate the crucial role of the foetus in placental IDO, but not NOS2, production following T. gondii infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号