首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Hmong Diaspora is one of the widest modern human migrations. Mainly localised in South-East Asia, the United States of America, and metropolitan France, a small community has also settled the Amazonian forest of French Guiana. We have biologically analysed 62 individuals of this unique Guianese population through three complementary genetic markers: mitochondrial DNA (HVS-I/II and coding region SNPs), Y-chromosome (SNPs and STRs), and the Gm allotypic system. All genetic systems showed a high conservation of the Asian gene pool (Asian ancestry: mtDNA = 100.0%; NRY = 99.1%; Gm = 96.6%), without a trace of founder effect. When compared across various Asian populations, the highest correlations were observed with Hmong-Mien groups still living in South-East Asia (Fst < 0.05; P-value < 0.05). Despite a long history punctuated by exodus, the French Guianese Hmong have maintained their original genetic diversity.  相似文献   

2.
《Aquatic Botany》2007,86(1):69-75
To obtain accurate estimates of population structure for purposes of conservation planning for wild lotus (Nelumbo nucifera Gaertn.) in central China, genetic diversity among and within six populations, and clonal diversity within another two populations of the species were analyzed. The genetic diversity was high (percentage of polymorphic bands, PPB = 90.0%; Shannon's information index, I = 0.383 ± 0.234) at the species level, but low within individual study populations (PPB = 35.8%; Shannon's information index I = 0.165 ± 0.241). The mean coefficient of gene differentiation (Gst) was 0.570, indicating that 43.0% of the genetic diversity resided within the population. Analysis of molecular variance (AMOVA) indicated that 50.47% of the genetic diversity among the study populations was attributed to geographical location while 12.3% was attributed to differences in their habitats. An overall value of mean estimated number of gene flow (Nm = 0.377) indicated that there was limited gene flow among the sampled populations. The level of clonal diversity found within the populations was considerably high (Simpson's diversity index, D = 0.985) indicating that clonal diversity contributes to a major extent to the overall genetic variation in the genetic structure of N. nucifera. On the basis of the high Gst and D values detected in this study we recommend that any future conservation plans for this species should be specifically designed to include those representative populations with the highest genetic variation for both in situ conservation and germplasm collection expeditions.  相似文献   

3.
《Aquatic Botany》2007,87(2):111-115
In this study, 169 stream lily (Helmholtzia glaberrima) seedlings from six micro-drainages were genotyped with AFLP markers to quantify the impact that topographic landscape features and altitude may have in shaping patterns of genetic diversity within individual populations. A global analysis of genetic diversity detected significant genetic differentiation among micro-drainages (FST = 0.22, P < 0.01). The observed genetic structure of sampled sites conformed to a hierarchical model of gene flow. Assignment tests also supported a hierarchical model of gene flow as only one dispersal event among the sampled micro-drainages was detected. This suggests that opportunities for seed dispersal in H. glaberrima are highly constrained by patterns of hydrographic networks even at a local scale. In contrast, altitude had little impact on partitioning of genetic diversity as no increase in genetic diversity was evident among individuals in the upper (0.18 ± 0.02), and lower (0.17 ± 0.02) areas of micro-drainages. Overall these results suggest that the influence of freshwater landscape features can vary widely the effect on the patterns of genetic diversity of seedlings in stream lily populations.  相似文献   

4.
Chemical and genetic diversity of Teucrium polium L. subsp. polium from western Algeria and T. polium L. subsp. capitatum from Corsica were investigated. Diversity within and among the two populations of subspecies was assessed according to the chemical composition of their essential oils and the genetic diversity. Chemical analysis was performed using a combination of capillary GC-RI and GC/MS after fractionation using column chromatography. Genetic structures were mapped using three polymorphic genetic markers: two chloroplast markers (RPL32-TRNL and TRNL-F) and ribosomal nuclear markers (ITS region). The statistical analysis showed that both subspecies were clearly distinguished by these chemical and genetic markers. The oil chemical compositions differed qualitatively and quantitatively between the subspecies. Both collective oils were dominated by hydrocarbon compounds however the Algerian sample oils exhibited higher amounts of hydrocarbon sesquiterpenes than those of Corsica (31.2 g/100 g vs. 4.4 g/100 g) while the latter displayed higher amounts of hydrocarbon monoterpenes than the first (59.3 g/100 g vs. 34.3 g/100 g). Neighbor-joining, Maximum likelihood and Bayesian trees constructed from chloroplast markers and nuclear ITS region sequences showed the existence of two groups associated with taxonomic and chemical characteristics. The study indicated that variation in the essential oil composition within subspecies depends on genetic background. The samples of subsp. capitatum from Corsica are a homogeneous group, in contrast to samples of subsp. polium from Algeria which were clustered in two groups. Chemical and genetic diversity of Algerian populations could be explained by geographical isolation of the populations. In addition, the morphological polymorphism observed throughout the colour of flowers could be explained by environmental parameters as well as the soil pH.  相似文献   

5.
Gastrodia elata Blume, a mycoheterotrophic orchid native to the Far East, is an endangered medicinal plant in China. Genetic variation among 19 natural populations of G. elata was examined in central China by using allozyme polymorphism (16 loci in six enzymatic systems). The species exhibited high level of genetic diversity (P = 56.3%, A = 2.2 and HE = 0.221), which was mainly attributed to its perennial habit and mixed reproduction system (both sexual and asexual). Evident genetic differentiation in G. elata natural populations was suggested by FST = 0.241. AMOVA analysis showed 31.3% of the total molecular variation was attributed to inter-population differentiation. Obvious genetic structure and genetic depauperation of some populations indicate forest fragmentation and over-collection have affected genetic variation of G. elata. A conservation strategy, which is conserving populations with great genetic distinction or high level of genetic variation from four management units, is recommended.  相似文献   

6.
Dysosma versipellis (Berberidaceae) is an endangered and endemic species in China. To provide scientific foundation for formulating conservation strategies, we sampled six extant populations of this species and assessed the levels and patterns of genetic diversity using ISSR markers (11 primers). Of 144 bands detected 57.64% were polymorphic, but on average only 20.72% were polymorphic within populations. Our results revealed a low level of intraspecific genetic diversity (at population level: Hpop = 0.082, HB = 0.177, SI = 0.1194; at species level: Hpop = 0.207, HB = 0.378, SI = 0.3069). A high level of genetic differentiations among populations was detected based on Nei's genetic diversity analysis (60%), AMOVA analysis (65%), and Bayesian analysis (53%). The low levels of heterozygosity and high genetic differentiation observed in D. versipellis may be the consequence of low rate of natural recruitment, clonal growth, gene drift, and habitat fragmentation. Based on this, we suggest that in situ conservation be an important and practical measure for maintaining the genetic diversity of this species. Ex situ conservation should sample from different populations across the distribution range of the species to conserve high genetic diversity.  相似文献   

7.
Habitat fragmentation can prevent gene flow between plant populations and lead to a loss of genetic diversity. However, such impact of fragmentation has not always been consistently confirmed by previous studies and the issue still needs further research. Particularly little is known about the impact of fragmentation on steppe plants. Steppe once covered vast, continuous areas, and nowadays is among the most fragmented biomes. In Ukraine, remnants of this habitat survived in large but few nature reserves and loess ravines as well as on kurgans (burial mounds of ancient nomadic people), which, despite their small size, are still numerous and scattered throughout the landscape.We studied the impact of fragmentation on the genetic diversity and structure of Iris pumila, a typical species of European steppes. Our main focus was to compare the genetic characteristics between kurgan populations (n = 8), and populations from larger refugia (n = 6). We assessed the genetic diversity of the studied populations with Universal Rice Primers.Our analyses revealed high genetic diversity across all investigated populations (mean He: 0.233; mean PPB: 58.57). However in kurgan populations genetic diversity was significantly higher than in larger refugia. Genetic diversity (He) was negatively correlated with population size. Most of the molecular variance (82%) was represented within populations, whereas genetic differentiation among populations was moderate (ΦST = 0.160), and low among refugia types (ΦRT = 0.026).The maintenance of high genetic diversity despite two centuries of fragmentation may be related to the moderate disturbance occurring on kurgans, which enhances the sexual reproduction of the species. Moreover, we assume that species traits such as longevity and polyploidy might counterbalance genetic drift, while its self-incompatibility and presence of a soil seed bank allows for the replenishment of the gene pool. Overall, our results suggest that kurgans can protect genetic diversity of steppe species.  相似文献   

8.
The genetic diversity among five populations (Bhadbada reservoir, Mohinisagar reservoir, Bansagar reservoir, Bargi reservoir and Gandhisagar reservoir) was revealed using random amplified polymorphic DNA markers. 10 random primers screened, 5 primers revealed various banding patterns and yielded 71 total loci as an average of which 39.60 (55.77%) were polymorphic between the population and 86.84% within the population of Sperata seenghala. Population wise the highest genetic polymorphism was obtained in Bhadbada reservoir as 67.61% whereas the lowest was in Gandhisagar reservoir as 49.30%. However, Analysis of Molecular Variance indicated low genetic diversity (Hpop = 0.0921 ± 0.1249; I = 0.1584 ± 0.1942) in Bansagar reservoir. Relative genetic differentiation (GST = 0.3993) and restricted gene flow (Nm = 0.7523) as an average indicated low gene diversity among the fish populations. The un-weighted pair group method with averages (UPGMA) dendrogram showed 05 major clusters, each cluster representing a population. Fish population of Mohinisagar reservoir showed high genetic distance (0.3981) with respective Bargi reservoir population and highest genetic identity (0.8846) reflected between Bansagar and Gandhisagar reservoir. Highest genetic distance between Mohinisagar and Bargi reservoir fish populations shows no significant correlation between genetic and geographical distance of the genotypes collected from different lentic and geographical isolated water bodies. This investigation indicated that lowest genetic diversity existed in different geographic populations of S. seenghala. All the five populations were found to be low in genetic variation, which is useful information for future conservation measures of S. seenghala confined in natural water bodies of Madhya Pradesh.  相似文献   

9.
Genetic diversity and genetic differentiation of narrowly endemic Sinocalycanthus chinensis Cheng et S.Y. Chang, an endangered species of China, were analyzed using random amplified polymorphic DNA (RAPD) markers. Totally, 165 stable and clearly scored RAPD bands were achieved from 12 primers. The genetic diversity of S. chinensis was high (P% = 68.84; h = 0.2421 ± 0.1978; I = 0.3615 ± 0.2789), whereas that at the population level was relatively low (P% = 14.49; h = 0.0578 ± 0.0167; I = 0.0843 ± 0.0236). High genetic differentiation among populations was detected based on Shannon's information index (0.7668), Nei's gene diversity (0.7613) and AMOVA (0.8183). This might be explained by its survival in refugia during the last glaciation in southeastern China with origin from a widespread continental progenitor. The 10 populations from different geographical sites could be clustered into two groups. Low gene flow due to mixed mating system and anthropogenic activities likely played important roles in shaping the population genetic structure of the species.  相似文献   

10.
Hucho taimen are listed as endangered in China. The population size has declined recently, prompting an increase in the level of listing from grade three in 2002 to grade five in 2006. We analyzed the genetic diversity of wild populations using 17 microsatellite markers to establish a scientific basis for conservation of this species. We collected tissue samples from four populations in the Heilongjiang River basin: Huma River (HM), Hutou (HT), Haiqing (HQ), and Zhuaji (ZJ). A total of 21 loci were amplified, 18 of which were polymorphic. The number of alleles per locus ranged from 2 to 9 (mean: 4.1905). There were 13 highly polymorphic loci and 5 moderately polymorphic loci. Analysis of five genetic diversity parameters (Na, Ne, Ho, He, and PIC) suggested moderate levels of diversity within the populations. The populations were ranked HT > HQ > ZJ > HM, but the differences in diversity were not statistically significant (P > 0.05). A comparison of variation among all four populations suggested Hardy–Weinberg disequilibrium at 20% of the loci. Genetic differentiation (Fst) was 0.0644 and the gene flow among populations was estimated at 3.36 individuals per generation. The majority of diversity (93.88%) occurred among individuals within a population. In contrast, relatively little (6.12%) of the genetic diversity was distributed between the populations. An analysis of genetic differentiation and genetic distance between pairs of populations revealed that both parameters were higher in comparisons of the HM population to the HT, HQ, and ZJ populations than among the three latter populations. This suggests that the HM population has a distinct genetic structure. We hypothesize that habitat degradation and excessive fishing, not low genetic diversity, has caused the decline in H. taimen populations. However, this species should be protected from further declines in genetic diversity.  相似文献   

11.
《Aquatic Botany》2007,86(1):46-52
Vallisneria spinulosa is a dominant submerged macrophyte in lakes of the middle–lower reaches of the Yangtze River. Allozyme variation, clonal diversity and population genetic structure were investigated for a total of 396 individuals sampled from 10 extant populations. V. spinulosa maintained high levels of genetic variation both at the species (P = 46.2, A = 1.69, He = 0.23) and at the population level (P = 46.2, A = 1.58, He = 0.21). Although aquatic macrophytes commonly exhibit low genetic variation within populations, the obligately outcrossing mating system of V. spinulosa and pervasive gene flow likely account for the high levels of diversity maintained within populations. All V. spinulosa populations contained high clonal diversity with a mean proportion of distinguishable genotypes of 0.57 and a mean Simpson's diversity index of 0.95, indicating that populations were founded sexually or that successful seedling recruitment occurred after initial colonization. Partitioning of genetic diversity revealed a surprisingly low population differentiation (GST = 0.06) as compared to other hydrophilous angiosperms. No evidence of isolation-by-distance was found (r = 0.056, P = 0.312), suggesting that gene flow was not restricted geographically. The UPGMA cluster analysis revealed that several widely separated populations grouped together, suggesting long-distance gene flow among populations. The high vagility of V. spinulosa and extensive hydrologic connectivity among populations have facilitated long-distance gene flow and resulted in the pattern of population genetic structure in V. spinulosa.  相似文献   

12.
《Aquatic Botany》2009,90(4):372-378
We examined chloroplast DNA (cpDNA) atpB–rbcL intergenic spacer sequences variation within Sagittaria potamogetifolia, an endangered and endemic marsh herb in China. Sequence data were obtained from 54 individuals in six extant populations of the species. Sequences appeared to evolve neutral (Tajima's criterion D = −1.59826, 0.1 > P > 0.05 and Fu and Li's tests D* = −1.44484, P > 0.1; F* = −1.83446, P > 0.1). Eleven haplotypes were identified in S. potamogetifolia. A relatively high level of haplotype diversity (h = 0.0.699) and low level of nucleotide diversity (pi = 0.0035 ± 0.0020) were detected in S. potamogetifolia. Pairwise comparisons of Fst and Nm deduced from cpDNA variation suggested no significant genetic differentiation between populations of S. potamogetifolia excepted for the WY-1 population. Low genetic differentiation among populations and also among regions was consistently indicated by both hierarchical analyses of molecular variance (AMOVA) and the structure of a neighbor-joining tree. Lack of population differentiation between populations or between regions in cpDNA sequences may be due to effects of lower substitution rates or lineage sorting. In the minimum spanning network, all tip haplotypes except for the haplotype J were unique to a particular population, while the interior nodes except for the haplotype E were widespread (haplotype A). From nested clade analysis (NCA), the evolutionary events such as restricted gene flow with isolation by distance and allopatric fragmentation were inferred to responsible for the current distribution of S. potamogetifolia populations, as well as their genetic diversity.  相似文献   

13.
《Small Ruminant Research》2007,67(1-3):140-149
Genetic variation at 23 microsatellite loci, population structure, and genetic bottleneck hypothesis were examined for Jamunapari goat population found in Etawah, Uttar Pradesh, India. Estimates of genetic variability such as effective number of alleles and gene diversities revealed substantial genetic variation frequently displayed by microsatellite markers. Number of alleles observed across the microsatellite loci varied from 2 to 10 with an overall mean of 4.913 ± 1.905. Average polymorphism across the studied loci and expected gene diversity in the population were 1.066 ± 0.510 and 0.528 ± 0.237, respectively. Population was observed to be significantly differentiated into different groups, and showed fairly high level of inbreeding (f = 0.189 ± 0.049) and global heterozygote deficit. Bottleneck analysis indicated the introduction of unique/rare alleles by immigrants.  相似文献   

14.
Picconia azorica (Tutin) Knobl. (Oleaceae) is an endangered species, endemic to the Azores. Samples from 31 populations in 8 islands were genotyped using 8 newly developed nuclear microsatellite markers. From the amplified loci, 81% were polymorphic across all populations and the species showed a relatively high total genetic diversity (HT = 0.7). Several populations were close to Hardy–Weinberg equilibrium while others presented positive FIS values (0.02–0.2). The largest proportion of genetic variation (98%) occurred within populations and the level of differentiation between populations, was generally low, although 27% of the population pairwise comparisons showed relatively high differentiation values (0.25  RST  0.65). Relatively high levels of gene flow were also found among most populations. Using the Bayesian clustering method implemented in STRUCTURE we found a particular genetic pattern in Corvo samples, and also similarities between Santa Maria, São Miguel and Flores populations. Considerable levels of genetic admixture within P. azorica populations might have resulted from: (i) fruit dispersal by native birds; and/or (ii) human mediated dispersal between islands. Our results revealed the existence of some genetically depauperate populations needing specific conservation measures, and indicate that arbitrary translocation of individuals between islands should be avoided.  相似文献   

15.
Harmful cyanobacteria are a globally growing concern. They produce a large variety of toxic compounds, including saxitoxin and its many structural variants, a group of potent neurotoxins collectively called paralytic shellfish toxins or PST. Nucleic acid based detection methods, such as qPCR, have been proposed as potential screening and monitoring tools for toxic cyanobacteria, but it is not clear how well the presence and quantity of saxitoxin biosynthesis (sxt) genes can be used to predict the production of PST in the environment. In this study, the prevalence of three sxt genes and their co-occurrence with paralytic shellfish toxins in the environment was investigated. The sxtA, sxtG and sxtB genes were present on average in 31% of the samples collected from lakes and brackish coastal waters on Åland Islands, Finland, during the three-year monitoring period. PST detection frequency varied from 13% to 59% from year to year, and concentrations were generally low. On average higher sxtB copy numbers were associated with PST detection, and although a positive correlation between gene copy numbers and toxin concentrations was observed (Spearman rank correlation, ρ = 0.53, P = 0.012), sxt gene presence or quantity didn’t reliably predict PST production. Sequencing of sxtA fragments and identification of main cyanobacteria indicated that the likely candidate responsible for PST production in the samples belonged to the genus Anabaena.  相似文献   

16.
《Mammalian Biology》2014,79(4):268-276
The Balkans are one of the last large refugia for brown bear (Ursus arctos) populations in Europe, and Bulgaria, in particular, contains relatively large areas of suitable brown bear habitat and a potential population of more than 600 individuals. Despite this, the majority of brown bear research remains focused on bear populations in Central and Western Europe. We provide the first assessment of genetic population structure of brown bears in Bulgaria by analysing tissue samples (n = 16) as well as samples collected with noninvasive genetic methods, including hair and faecal samples (n = 189 and n = 163, respectively). Sequence analysis of a 248 base pair fragment of the mitochondrial control region showed that two highly divergent mitochondrial European brown bear lineages form a contact zone in central Bulgaria. Furthermore, the analysis of 13 polymorphic microsatellite markers identified 136 individuals and found substantial genetic variability (He = 0.74; NA = 8.9). The combination of both genetic markers revealed the presence of weak genetic substructure in the study area with considerable degrees of genetic admixture and the likely presence of migration corridors between the two subpopulation in the Rhodope Mountains and Stara Planina as evidenced from the genetic detection of two male long-distance dispersers. A detailed assessment from densely collected samples in the Rhodope Mountains resulted in a population size estimate of 315 (95% CI = 206–334) individuals, indicating that not all available habitat is presently occupied by bears in this region. Efficient management plans should focus on preserving connectivity of suitable habitats in order to maintain gene flow between the two Bulgarian brown bear subpopulations.  相似文献   

17.
Phenotypic diversity in poultry has been mainly driven by artificial selection and genetic drift. These led to the adaptation to the environment and the development of specific phenotypic traits of chickens in response to their economic use. This study evaluated genetic diversity within and between Russian breeds and populations using Illumina Chicken 60 K SNP iSelect BeadChip by analysing genetic differences between populations with Hudson's fixation index (FST statistic) and heterozygosity. We estimated the effect of rare alleles and linkage disequilibrium (LD) on these measurements. To assess the effect of LD on the genetic diversity population, we carried out the LD-based pruning (LD < 0.5 and LD < 0.1) for seven chicken populations combined (I) or separately (II). LD pruning was specific for different dataset groups. Because of the noticeably large sample size in the Russian White RG population, pruning was substantial for Dataset I, and FST values were only positive when LD < 0.1 pruning was applied. For Dataset II, the LD pruning results were confirmed by examining heterozygosity and alleles' frequency distribution. LD between single nucleotide polymorphisms was consistent across the seven chicken populations, except the Russian White RG population with the smallest r2 values and the largest effective population size. Our findings suggest to study variability in each population LD pruning has to be carried separately not after merging to avoid bias in estimates.  相似文献   

18.
Peat molecular chemistry reflects a combination of plant input and decomposition. Both vegetation community and the degree of decomposition of plant remains are highly dependent on depth and fluctuation of the water table and thus peat organic matter (OM) chemistry reflects past hydrological conditions. Changes in hydrology according to the OM composition (by pyrolysis-gas chromatography/mass spectrometry, pyrolysis-GC/MS) in a high-resolution sampled monolith of an 8000 years old peat deposit are presented. Analysis of 18 modern vegetation species resulted in molecular markers for Erica spp., Deschampsia flexuosa, Juncus bulbosus and Carex binervis, in addition to more general markers which enabled differentiation between woody, grass and moss vegetation. Factor analysis of 106 pyrolysis products quantified for all peat samples enabled identification of mineral (Factor 1) and hydrological (Factor 2) conditions of the bog. Depth profiles of vegetation markers showed good agreement with those of the scores of both factors and enabled the identification of 14 relatively wet periods, dating to 1430–1865 AD, 930–1045 AD, 640 AD, 270–385 AD, 190–215 AD, 135 AD, 45 BC–15 AD, 260–140 BC, 640–440 BC, 1055–960 BC, 1505–1260 BC, 2300 BC, 4190–2945 BC and 5700–5205 BC, which show excellent agreement with other palaeoclimatic studies in Europe. The results emphasize the importance of high-resolution sampling, in combination with the use of multiple vegetation markers and other peat OM characteristics for a proper interpretation of a peat record.  相似文献   

19.
The bumblebee, Bombus ardens, is a valuable natural resource, and is most notably utilized for greenhouse pollination. In order to gain a greater understanding of the population genetic structure and the genetic diversity of this species, we sequenced a portion of the mitochondrial COI gene corresponding to the “DNA Barcode” region (658 bp) from 160 individuals collected over 15 Korean localities. Uncorrected pairwise distances among the eight haplotypes suggested low intraspecific genetic diversity, with a maximum sequence divergence of 0.3%. Such a low level of intraspecific genetic diversity was further reflected in local populations, particularly to islet populations, such as those of Youngheungdo, Jakyakdo, and Ulleugdo, which had zero genetic diversity. Geographically, one haplotype (BARBA01) was widespread and dominant, with a frequency of 90.6% (145 among 160 individuals). Other haplotypes were restricted to one to three localities and had low frequency. Overall, a very high rate of per generation female migration ratio (Nm = 4.6 to infinite) and a very low level of genetic fixation (FST = 0 to 0.099) were detected between pairs of localities, suggesting that the B. ardens populations on the Korean peninsula are panmictic, which is consistent with our understanding of their dispersal capability.  相似文献   

20.
The mitochondrial DNA cytochrome b of 132 Leiocassis longirostris collected from 12 localities in the upper to lower reaches of the Yangtze River were amplified and partially sequenced using the PCR technique. The results showed that 27 nucleotide sites were variable along 817 bp length of homologous sequence (3.3%), base substitutions happened mostly at the third codon position. A total of 22 haplotypes were identified, which were characterized with moderate haplotype diversity (h = 0.5417 ± 0.0519), but low nucleotide diversity (π = 0.0019 ± 0.0012). Median-joining network analysis revealed star-shaped patterns with one common central haplotype (H3), whereas mismatch distribution analysis found that the Chinese longsnout catfish fitted a smooth unimodal distribution, which suggested that this species underwent population expansion following bottlenecks and/or they originated from a small number of founding individuals. The time that the total population of Chinese longsnout catfish in the Yangtze River expanded was estimated 169,000–337,000 years before present. The analysis of molecular variance (AMOVA) and phylogenetic reconstructions did not detect significant geographic structure between different river sections, especially between above and below the Gezhouba Dam and the Three Gorges Dam, which suggested that these recently developed dams might have not significantly resulted in population genetic differentiation in the Chinese longsnout catfish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号