首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Environmental factors that shape dynamics of benthic toxic blooms are largely unknown. In particular, for the toxic dinoflagellate Ostreopsis cf. ovata, the importance of the availability of nutrients and the contribution of the inorganic and organic pools to growth need to be quantified in marine coastal environments. The present study aimed at characterizing N-uptake of dissolved inorganic and organic sources by O. cf. ovata cells, using the 15N-labelling technique. Experiments were conducted taking into account potential interactions between nutrient uptake systems as well as variations with the diel cycle. Uptake abilities of O. cf. ovata were parameterized for ammonium (NH4+), nitrate (NO3) and N-urea, from the estimation of kinetic and inhibition parameters. In the range of 0 to 10 μmol N L−1, kinetic curves showed a clear preference pattern following the ranking NH4+ > NO3 > N-urea, where the preferential uptake of NH4+ relative to NO3 was accentuated by an inhibitory effect of NH4+ concentration on NO3 uptake capabilities. Conversely, under high nutrient concentrations, the preference for NH4+ relative to NO3 was largely reduced, probably because of the existence of a low-affinity high capacity inducible NO3 uptake system. Ability to take up nutrients in darkness could not be defined as a competitive advantage for O. cf. ovata. Species competitiveness can also be defined from nutrient uptake kinetic parameters. A strong affinity for NH4+ was observed for O. cf. ovata cells that may partly explain the success of this toxic species during the summer season in the Bay of Villefranche-sur-mer (France).  相似文献   

2.
《Ecological Indicators》2007,7(2):371-386
Aquatic macroinvertebrates have been among the principal biological communities used for freshwater monitoring and assessment for several decades, but macroinvertebrate biomonitoring has not incorporated nutrient measures into assessment strategies. Two nutrient biotic indices were developed for benthic macroinvertebrate communities, one for total phosphorus (NBI-P), and one for nitrate (NBI-N). Weighted averaging was used to assess the distributions of 164 macroinvertebrate taxa across TP and NO3 gradients and to establish nutrient optima and subsequent nutrient tolerance values. Both the NBI-P and NBI-N were correlated with increasing mean TP and NO3 values (r = 0.68 and r = 0.57, respectively, p < 0.0001). A three-tiered scale of eutrophication for TP and NO3 (oligotrophic: ≤0.0175 mg/l TP, ≤0.24 mg/l NO3, mesotrophic: >0.0175 to ≤0.065 mg/l TP, >0.24 to ≤0.98 mg/l NO3, eutrophic: >0.065 mg/l TP, >0.98 mg/l NO3) was also established through cluster analysis of invertebrate communities using Bray–Curtis (quantitative) similarity. Significant differences (p < 0.0001) were detected between median NBI-P and NBI-N scores among the three trophic states. Therefore, the nutrient biotic indices (NBIs) appear to accurately reflect changes in stream trophic state. Multimetric water quality assessments were also used to identify thresholds of impairment among the three trophic states. Hodges-Lehman estimation indicated that the greatest change in assessment results occurred between the mesotrophic and eutrophic states. The eutrophic state also represented the highest percentage of overall impairment. Therefore, the suggested threshold for nutrient impairment is the boundary between mesotrophic and eutrophic (0.065 mg/l TP and 0.98 mg/l NO3). The corresponding NBI-P score (6.1) and NBI-N score (6.0) for this threshold incorporate predictive capabilities into the NBIs. The NBI and index score thresholds of impairment will provide monitoring programs with a robust measure of stream nutrient status and serve as a useful tool in enforcing regional nutrient criteria.  相似文献   

3.
The toxic HAB dinoflagellate Karenia brevis (Davis) G. Hansen & Ø. Moestrup (formerly Gymnodinium breve) exhibits a migratory pattern atypical of dinoflagellates: cells concentrate in a narrow (∼0–5 cm) band at the water surface during daylight hours due to phototactic and negative geotactic responses, then disperse downward at night via non-tactic, random swimming. The hypothesis that this daylight surface aggregation behavior significantly influences bacterial and algal productivity and nutrient cycling within blooms was tested during a large, high biomass (chlorophyll a >19 μg L−1) K. brevis bloom in October of 2001 by examining the effects of this surface layer aggregation on inorganic and organic nutrient concentrations, cellular nitrogen uptake, primary and bacterial productivity and the stable isotopic signature (δ15N, δ13C) of particulate material. During daylight hours, concentrations of K. brevis and chlorophyll a in the 0–5 cm surface layer were enhanced by 131% (±241%) and 32.1% (±86.1%) respectively compared with an integrated water sample collection over a 0–1 m depth. Inorganic (NH4, NO3+2, PO4, SiO4) and organic (DOP, DON) nutrient concentrations were also elevated within the surface layer as was both bacterial and primary productivity. Uptake of nitrogen (NH4+, NO3, urea, dissolved primary amines, glutamine and alanine) compounds by K. brevis was greatest in the surface layer for all compounds tested, with the greatest enhancement evident in urea uptake rates, from 0.08 × 10−5 ng N K. brevis cell−1 h−1 to 3.1 × 10−5 ng N K. brevis cell−1 h−1. These data suggests that this surface aggregation layer is not only an area of concentrated cells within K. brevis blooms, but also an area of increased biological activity and nutrient cycling, especially of nitrogen. Additionally, the classic dinoflagellate migration paradigm of a downward migration for access to elevated NO3 concentrations during the dark period may not apply to certain dinoflagellates such as K. brevis in oligotrophic nearshore areas with no significant nitricline. For these dinoflagellates, concentration within a narrow surface layer in blooms during daylight hours may enhance nutrient supply through biological cycling and photochemical nutrient regeneration.  相似文献   

4.
The main objective of this study was to quantify nutrient transport dynamics of a previously ungauged, temperate watershed (145 km2) surrounding a shallow eutrophic lake and discern lake response to external nutrient loading, based on soil water assessment tool (SWAT) and the Organization of Economic Cooperation and Development (OECD) empirical lake models, respectively. A SWAT model was used to simulate baseline nutrient dynamics after its calibration and validation against daily tributary flow, total dissolved phosphorus (TDP), total phosphorus (TP), and nitrate (NO3) loads. On the watershed scale, median annual TDP, TP, and NO3 losses were 0.4, 1.1, and 2.0 kg ha 1, respectively. The highest median annual TP and NO3 losses were estimated at 3.7 and 7.7 kg ha 1 for pastureland and 1.7 and 3.8 kg ha 1 for cropland and mixed forests, respectively. Baseflow was the major nutrient transport pathway over a wide range of precipitation events (450 to 900 mm yr 1). Erosion was the predominant surface process exporting P across the watershed. Critical source areas (CSAs) of TP and NO3 comprised 17% and 4% of the watershed, respectively. Annual mean TP, and mean and maximum chlorophyll content indicated a hyper-eutrophication risk for the lake. An external P load reduction by excess of 80% could be necessary to restore mesotrophy in the lake. Our results suggested that subsurface P transport should not be overlooked a priori when groundwater-dependent and extensively farmed watersheds are managed for eutrophication abatement.  相似文献   

5.
This study represents the most comprehensive assessment of kinetic parameters for Karenia brevis to date as it encompasses natural populations sampled during three different bloom years in addition to cultured strains under controlled conditions. Nitrogen (N) uptake kinetics for ammonium (NH4+), nitrate (NO3), urea, an amino acid mixture, individual amino acids (glutamate and alanine), and humic substrates were examined for the toxic red tide dinoflagellate, K. brevis, during short term incubations (0.5–1 h) using 15N tracer techniques. Experiments were conducted using natural populations collected during extensive blooms along the West Florida Shelf in October 2001, 2002, and 2007, and in cultured strains (CCFWC 251 and CCFWC 267) obtained from the Florida Fish and Wildlife Institute culture collection. Kinetic parameters for the maximum uptake velocity (Vmax), half-saturation concentration (Ks), and the affinity constant (α) were determined. The affinity constant is considered a more accurate indicator of substrate affinity at low concentrations. K. brevis took up all organic substrates tested, including N derived from humic substances. Uptake rates of the amino acid mixture and some NO3 incubations did not saturate even at the highest substrate additions (50–200 μmol N L−1). Based upon the calculated α values, the greatest substrate preference was for NH4+ followed by NO3  urea, humic compounds and amino acids. The ability of K. brevis to utilize a variety of inorganic and organic substrates likely helps it flourish under a wide range of nutrient conditions from bloom initiation in oligotrophic waters offshore to bloom maintenance near shore where ambient nutrient concentrations may be orders of magnitude greater.  相似文献   

6.
Fluxes of major ions and nutrients were measured in the N-saturated mountain forest catchment-lake system of Čertovo Lake (Czech Republic) from 1998 to 2014. The lake has been rapidly recovering from atmospheric acidification due to a 90% decrease in sulphate (SO42−) deposition since the late 1980s and nitrate (NO3) contribution to the pool of strong acid anion and leaching of dissolved organic carbon (DOC) have increased. Present concentrations of base cations, phosphorus (P), total organic N (TON), and ionic (Ali) and organically bound (Alo) aluminium in tributaries are thus predominantly governed by NO3 and DOC leaching. Despite a continuing recovery lasting 25 years, the Čertovo catchment is still a net source of protons (H+), producing 44 mmol m−2 yr−1 H+ on a catchment-area basis (corresponding to 35 μmol L−1 on a concentration basis). Retention of the deposited inorganic N in the catchment averages 20%, and ammonium consumption (51 mmol m−2 yr−1) and net NO3 production (28 mol m−2 yr−1) are together the dominant terrestrial H+ generating processes. In contrast, the importance of SO42− release from the soils on terrestrial H+ production is continuously decreasing, with an average of 47 mmol m−2 yr−1 during the study. The in-lake biogeochemical processes reduce the incoming acidity by ∼40%, neutralizing 23 μmol L−1 H+ (i.e., 225 mmol m−2 yr−1 on a lake-area basis). Denitrification and photochemical and microbial decomposition of DOC are the most important in-lake H+ consuming processes (50 and 39%, respectively), while hydrolysis of Ali (from tributaries and photochemically liberated from Alo) is the dominant in-lake H+ generating process. Because the trends in water chemistry and H+ balance in the catchment-lake system are increasingly related to variability in NO3 and DOC leaching, they have become sensitive to climate-related factors (drought, elevated runoff) and forest damage that significantly modify the leaching of these anions. During the study period, increased exports of NO3 (accompanied by Ali and base cations) from the Čertovo catchment occurred after a dry and hot summer, after forest damage, and during elevated winter runoff. Increasing DOC export due to decreasing acid deposition was further elevated during years with higher runoff (and especially during events with lateral flow), and was accompanied by P, TON, and Alo leaching. The climate-related processes, which originally “only” confounded chemical trends in waters recovering from acidification, may soon become the dominant variables controlling water composition in N-saturated catchments.  相似文献   

7.
《Harmful algae》2011,10(6):531-539
Temporal and spatial variability in the kinetic parameters of uptake of nitrate (NO3), ammonium (NH4+), urea, and glycine was measured during dinoflagellate blooms in Changjiang River estuary and East China Sea coast, 2005. Karenia mikimotoi was the dominant species in the early stage of the blooms and was succeeded by Prorocentrum donghaiense. The uptake of nitrogen (N) was determined using 15N tracer techniques. The results of comparison kinetic parameters with ambient nutrients confirmed that different N forms were preferentially taken up during different stages of the bloom. NO3 (Vmax 0.044 h−1; Ks 60.8 μM-N) was an important N source before it was depleted. NH4+ (Vmax 0.049 h−1; Ks 2.15 μM-N) was generally the preferred N. Between the 2 organic N sources, urea was more preferred when K. mikimotoi dominated the bloom (Vmax 0.020 h−1; Ks 1.35 μM-N) and glycine, considered as a dominant amino acid, was more preferred when P. donghaiense dominated the bloom (Vmax 0.025 h−1; Ks 1.76 μM-N). The change of N uptake preference by the bloom-forming algae was also related to the variation in ambient N concentrations.  相似文献   

8.
《Harmful algae》2009,8(1):54-59
Red tides (high biomass phytoplankton blooms) have frequently occurred in Hong Kong waters, but most red tides occurred in waters which are not very eutrophic. For example, Port Shelter, a semi-enclosed bay in the northeast of Hong Kong, is one of hot spots for red tides. Concentrations of ambient inorganic nutrients (e.g. N, P), are not high enough to form the high biomass of chlorophyll a (chl a) in a red tide when chl a is converted to its particulate organic nutrient (N) (which should equal the inorganic nutrient, N). When a red tide of the dinoflagellate Scrippsiella trochoidea occurred in the bay, we found that the red tide patch along the shore had a high cell density of 15,000 cells ml−1, and high chl a (56 μg l−1), and pH reached 8.6 at the surface (8.2 at the bottom), indicating active photosynthesis in situ. Ambient inorganic nutrients (NO3, PO4, SiO4, and NH4) were all low in the waters and deep waters surrounding the red tide patch, suggesting that the nutrients were not high enough to support the high chl a >50 μg l−1 in the red tide. Nutrient addition experiments showed that the addition of all of the inorganic nutrients to a non-red-tide water sample containing low concentrations of Scrippsiella trochoidea did not produce cell density of Scrippsiella trochoidea as high as in the red tide patch, suggesting that nutrients were not an initializing factor for this red tide. During the incubation of the red tide water sample without any nutrient addition, the phytoplankton biomass decreased gradually over 9 days. However, with a N addition, the phytoplankton biomass increased steadily until day 7, which suggested that nitrogen addition was able to sustain the high biomass of the red tide for a week with and without nutrients. In contrast, the red tide in the bay disappeared on the sampling day when the wind direction changed. These results indicated that initiation, maintenance and disappearance of the dinoflagellate Scrippsiella trochoidea red tide in the bay were not directly driven by changes in nutrients. Therefore, how nutrients are linked to the formation of red tides in coastal waters need to be further examined, particularly in relation to dissolved organic nutrients.  相似文献   

9.
《Aquatic Botany》2005,81(4):326-342
The effects of NH4+ or NO3 on growth, resource allocation and nitrogen (N) uptake kinetics of two common helophytes Phragmites australis (Cav.) Trin. ex Steudel and Glyceria maxima (Hartm.) Holmb. were studied in semi steady-state hydroponic cultures. At a steady-state nitrogen availability of 34 μM the growth rate of Phragmites was not affected by the N form (mean RGR = 35.4 mg g−1 d−1), whereas the growth rate of Glyceria was 16% higher in NH4+-N cultures than in NO3-N cultures (mean = 66.7 and 57.4 mg g−1 d−1 of NH4+ and NO3 treated plants, respectively). Phragmites and Glyceria had higher S/R ratio in NH4+ cultures than in NO3 cultures, 123.5 and 129.7%, respectively.Species differed in the nitrogen utilisation. In Glyceria, the relative tissue N content was higher than in Phragmites and was increased in NH4+ treated plants by 16%. The tissue NH4+ concentration (mean = 1.6 μmol g fresh wt−1) was not affected by N treatment, whereas NO3 contents were higher in NO3 (mean = 1.5 μmol g fresh wt−1) than in NH4+ (mean = 0.4 μmol g fresh wt−1) treated plants. In Phragmites, NH4+ (mean = 1.6 μmol g fresh wt−1) and NO3 (mean = 0.2 μmol g fresh wt−1) contents were not affected by the N regime. Species did not differ in NH4+ (mean = 56.5 μmol g−1 root dry wt h−1) and NO3 (mean = 34.5 μmol g−1 root dry wt h−1) maximum uptake rates (Vmax), and Vmax for NH4+ uptake was not affected by N treatment. The uptake rate of NO3 was low in NH4+ treated plants, and an induction phase for NO3 was observed in NH4+ treated Phragmites but not in Glyceria. Phragmites had low Km (mean = 4.5 μM) and high affinity (10.3 l g−1 root dry wt h−1) for both ions compared to Glyceria (Km = 6.3 μM, affinity = 8.0 l g−1 root dry wt h−1). The results showed different plasticity of Phragmites and Glyceria toward N source. The positive response to NH4+-N source may participates in the observed success of Glyceria at NH4+ rich sites, although other factors have to be considered. Higher plasticity of Phragmites toward low nutrient availability may favour this species at oligotrophic sites.  相似文献   

10.
《Ecological Engineering》2007,29(2):192-199
Trees integrated into the range- and pasturelands of Florida could remove nutrients from deeper soil profiles that would otherwise be transported to water bodies and cause pollution. Soil nitrogen (N) and phosphorus (P) concentrations were monitored in three pastures: a treeless pasture of bahiagrass (Paspalum notatum); a pasture of bahiagrass under 20-year-old slash pine (Pinus elliotti) trees (silvopasture); and a pasture of native vegetation under pine trees (native silvopasture). Soil analysis from 10 profiles within each pasture showed that P concentrations were higher in treeless pasture (mean: 9.11 mg kg−1 in the surface to 0.23 mg kg−1 at 1.0 m depth) compared to silvopastures (mean: 2.51 and 0.087 mg kg−1, respectively), and ammonium–N and nitrate–N concentrations were higher in the surface horizon of treeless pasture. The more extensive rooting zones of the combined stand of tree + forage may have caused higher nutrient uptake from silvopastures than treeless system. Further, compared to treeless system, soils under silvopasture showed higher P storage capacity. The results suggest that, compared to treeless pasture, silvopastoral association enhances nutrient retention in the system and thus reduces chances for nutrient transport to surface water. The study reflects the scope for applying ecological-engineering and ecosystem-restoration principles to silvopastoral-system design.  相似文献   

11.
Diatom blooms in Thau lagoon are always related to rain events leading to inputs of inorganic nutrients such as phosphate, ammonium and nitrate through the watershed with time lags of about 1 week. In contrast, blooms of Alexandrium catenella/tamarense can occur following periods of 3 weeks without precipitation and no significant input of conventional nutrients such as nitrate and phosphate. Field results also indicate a significant drop (from 22–25 to 15–16 μM over 3 days) in dissolved organic nitrogen (DON) at the bloom peak, as well as a significant inverse relationship between A. catenella/tamarense cell density and DON concentrations that is not apparent for diatom blooms. Such dinoflagellate blooms are also associated with elevated (6–9 μM) ammonium concentrations, a curious feature also observed by other investigators, possibly the results of ammonium excretion by this organism during urea or other organic nitrogen assimilation.The potential use of DON by this organism represents short cuts in the nitrogen cycle between plants and nutrients and requires a new model for phytoplankton growth that is different from the classical diatom bloom model. In contrast to such diatom blooms that are due to conventional (nitrate, phosphate) nutrient pulses, Alexandrium catenella/tamarense blooms on the monthly time scale are due to organic nutrient enrichment, a feature that allows net growth rates of about 1.3 d−1, a value higher than that generally attributed to such organisms.  相似文献   

12.
The diatom Eucampia zodiacus is a harmful species that indirectly causes bleaching to nori (Pyropia) cultivation through competitive utilization of nutrients during its bloom, however cellular storage and changes in physiology by asexual reproduction remains unclear. In the present study, we experimentally investigated the nitrate (N), phosphate (P) and silicic acid (Si) consumption by various cell sizes of E. zodiacus strains, the apical axis length of which ranged from 10.2 to 77.3 μm. Nutrient cell quotas of E. zodiacus ranged from 2.7 to 8.4 pM cell−1 for N, 0.34–0.76 pM cell−1 for P and 1.7–7.3 pM cell−1 for Si, and they increased with cell size, in which there is a significant correlation between these two elements. The N and P quotas were estimated to be several times higher than the minimum cell quotas. In contrast, the Si cell quotas were approximately equal to those of the minimum values. Based on the present cell quotas, total nitrate consumption by E. zodiacus population when the blooms reached maximum cell density (=1000 cells ml−1) were estimated to be 6.5 μM. Monthly mean concentrations of dissolved inorganic nitrogen (DIN) range from 3.5 to 8.2 μM during the period of late nori harvest season when E. zodiacus blooms occur, and nori bleaching is reported at the condition of DIN concentration of less than 3 μM in Harima-Nada, eastern Seto Inland Sea, Japan. Therefore, the present results suggest that E. zodiacus causes serious damage to nori cultivation due to high levels of nutrient consumption.  相似文献   

13.
14.
《Process Biochemistry》2007,42(4):715-720
A comparative study to produce the correct influent for Anammox process from anaerobic sludge reject water (700–800 mg NH4+-N L−1) was considered here. The influent for the Anammox process must be composed of NH4+-N and NO2-N in a ratio 1:1 and therefore only a partial nitrification of ammonium to nitrite is required. The modifications of parameters (temperature, ammonium concentration, pH and solid retention time) allows to achieve this partial nitrification with a final effluent only composed by NH4+-N and NO2-N at the right stoichiometric ratio. The equal ratio of HCO3/NH4+ in reject water results in a natural pH decrease when approximately 50% of NH4+ is oxidised. A Sequencing batch reactor (SBR) and a chemostat type of reactor (single-reactor high activity ammonia removal over nitrite (SHARON) process) were studied to obtain the required Anammox influent. At steady state conditions, both systems had a specific conversion rate around 40 mg NH4+-N g−1 volatile suspended solids (VSS) h−1, but in terms of absolute nitrogen removal the SBR conversion was 1.1 kg N day−1 m−3, whereas in the SHARON chemostat was 0.35 kg N day−1 m−3 due to the different hydraulic retention time (HRT) used. Both systems are compared from operational (including starvation experiments) and kinetic point of view and their advantages/disadvantages are discussed.  相似文献   

15.
Cochlodinium polykrikoides is a globally distributed, ichthyotoxic, bloom-forming dinoflagellate. Blooms of C. polykrikoides manifest themselves as large (many km2) and distinct patches with cell densities exceeding 103 ml−1 while water adjacent to these patches can have low cell densities (<100 cells ml−1). While the effect of these blooms on fish and shellfish is well-known, their impacts on microbial communities and biogeochemical cycles are poorly understood. Here, we investigated plankton communities and the cycling of carbon, nitrogen, and B-vitamins within blooms of C. polykrikoides and compared them to areas in close proximity (<100 m) with low C. polykrikoides densities. Within blooms, C. polykrikoides represented more than 90% of microplankton (>20 μm) cells, and there were significantly more heterotrophic bacteria and picoeukaryotic phytoplankton but fewer Synechococcus. Terminal restriction fragment length polymorphism analysis of 16S and 18S rRNA genes revealed significant differences in community composition between bloom and non-bloom samples. Inside the bloom patches, concentrations of vitamin B12 were significantly lower while concentrations of dissolved oxygen were significantly higher. Carbon fixation and nitrogen uptake rates were up to ten times higher within C. polykrikoides bloom patches. Ammonium was a more important source of nitrogen, relative to nitrate and urea, for microplankton within bloom patches compared to non-bloom communities. While uptake rates of vitamin B1 were similar in bloom and non-bloom samples, vitamin B12 was taken up at rates five-fold higher (>100 pmol−1 L−1 d−1) in bloom samples, resulting in turn-over times of hours during blooms. This high vitamin demand likely led to the vitamin B12 limitation of C. polykrikoides observed during nutrient amendment experiments conducted with bloom water. Collectively, this study revealed that C. polykrikoides blooms fundamentally change microbial communities and accelerate the cycling of carbon, some nutrients, and vitamin B12.  相似文献   

16.
《Harmful algae》2009,8(1):66-69
Urea concentrations were tracked in the Knysna estuary, South Africa, following a strong initial storm of the austral summer rainy season in 2000. These post-storm urea concentrations are compared against a 1-year survey of these concentrations and demonstrate the initial and longer-term impacts of urea loading on a near-pristine estuary. Fifteen stations along the main channel of the estuary were sampled four times each, 2–4 weeks before the storm, providing and average urea concentration of 1.4 μmol N L−1. When these same stations were sampled 12 h after the storm the average urea concentration had increased to 9.4 μmol N L−1. The average urea concentration at these 15 stations remained high, averaging 10.2 μmol N L−1 and 10.0 μmol N L−1 36 and 84 h post-storm, respectively. The urea concentrations in the rivers supplying fresh water to the Knysna estuary, one draining pasturelands and the other draining informal housing settlements that relied on pit toilets and open sewers are also compared before and after this storm. These data suggest that spring storms significantly influence nutrient availability, which in turn, may be related to the large dinoflagellates blooms witnessed in the Knysna estuary during the later portion of the wet summer season.  相似文献   

17.
The uptake rates of different nitrogen (N) forms (NO3, urea, and the amino acids glycine and glutamic acid) by N-deficient, laboratory-grown cells of the mixotrophic haptophyte, Prymnesium parvum, were measured and the preference by the cells for the different forms determined. Cellular N uptake rates (ρcell, fmol N cell−1 h−1) were measured using 15N-labeled N substrates. P. parvum showed high preference for the tested amino acids, in particular glutamic acid, over urea and NO3 under the culture nutrient conditions. However, extrapolating these rates to Baltic Seawater summer conditions, P. parvum would be expected to show higher uptake rates of NO3 and the amino acids relative to urea because of the difference in average concentrations of these substrates. A high uptake rate of glutamic acid at low substrate concentrations suggests that this substrate is likely used through extracellular enzymes. Nitrate, urea and glycine, on the other hand, showed a non-saturating uptake over the tested substrate concentration (1–40 μM-N for NO3 and urea, 0.5–10 μM-N for glycine), indicating slower membrane-transport rates for these substrates.  相似文献   

18.
This research investigated the effects of various nutrients on arsenic (As) removal by arsenic hyperaccumulator Pteris vittata L. in a Hoagland nutrient solution (HNS). The treatments included different concentrations of Ca and K in 20% strength of HNS, different strengths of HNS (10, 20 and 30%), different strengths of HNS (10 and 20%) with and without CaCO3, and different concentrations of Ca, K, NO3, NH4, and P in 20% strength of HNS. The plants were grown in nutrient solution containing 1 mg As L?1 for 4 weeks except the Ca/K experiment where the plants were grown in nutrient solution containing 10 or 50 mg As L?1 for 1 week. Adding up to 4 mM Ca or 3 mM K to 20% strength HNS significantly (P < 0.05) increased plant arsenic accumulation when the solution contained 10 mg As L?1. Plant arsenic removal was reduced with increasing Ca and K concentrations at 50 mg As L?1. Lower strength of HNS (10%) resulted in the greatest plant arsenic removal (79%) due to lower competition of P with As for plant uptake. Addition of CaCO3 to 20% strength of HNS significantly increased arsenic removal by P. vittata. Among the nutrients tested, NO3 and CaCO3 were beneficial to plant arsenic removal while NH4, P and Cl had adverse effects. This experiment demonstrated that it is possible to optimize plant arsenic removal by adjusting nutrients in the growth medium.  相似文献   

19.
A pot experiment was carried out with tomato (Lycopersicon esculentum Mill.) cv. “Target F1” in a mixture of peat, perlite, and sand (1:1:1) to investigate the effects of supplementary calcium sulphate on plants grown at high NaCl concentration (75 mM). The treatments were: (i) control (C), nutrient solution alone; (ii) salt treatment (C + S), 75 mM NaCl; (iii) salt plus calcium treatment 1 (C + S + Ca1), 75 mM NaCl plus additional mixture of 2.5 mM CaSO4 in nutrient solution; (iv) salt plus calcium treatment 2 (C + S + Ca2), 75 mM NaCl plus additional mixture of 5 mM CaSO4 in nutrient solution. The plants grown under salt stress produced low dry matter, fruit weight, and relative water content than those grown in standard nutrient solution. Supplemental calcium sulphate added to nutrient solution containing salt significantly improved growth and physiological variables affected by salt stress (e.g. plant growth, fruit yield, and membrane permeability) and also increased leaf K+, Ca2+, and N in tomato plants. The effects of supplemental CaSO4 in maintaining membrane permeability, increasing concentrations of Ca2+, N, and K+ and reducing concentration of Na+ (because of cation competition in root zone) in leaves could offer an economical and simple solution to tomato crop production problems caused by high salinity.  相似文献   

20.
The nitrogen (N) uptake kinetic parameters for Microcystis field assemblages collected from the San Francisco Bay Delta (Delta) in 2012 and non-toxic and toxic laboratory culture strains of M. aeruginosa were assessed. The 15N tracer technique was used to investigate uptake of ammonium (NH4+), nitrate (NO3), urea and glutamic acid over short-term incubations (0.5–1 h), and to study inhibition of NO3, NH4+ and urea uptake by NH4+, NO3 and NH4+, respectively. This study demonstrates that Delta Microcystis can utilize different forms of inorganic and organic N, with the greatest capacity for NH4+ uptake and the least for glutamic acid uptake, although N uptake did not always follow the classic Michaelis–Menten hyperbolic relationship at substrate concentrations up to 67 μmol N L−1. Current ambient N concentrations in the Delta may be at sub-saturating levels for N uptake, indicating that if N loading (especially NH4+) were to increase, Delta Microcystis assemblages have the potential for increased N uptake rates. Delta Microcystis had the highest specific affinity, α, for NH4+ and the lowest for NO3. In culture, N uptake by non-toxic and toxic M. aeruginosa strains was much higher than from the field, but followed similar N utilization trends to those in the field. Neither strain showed severe inhibition of NO3 uptake by NH4+ or inhibition of NH4+ uptake on NO3, but both strains showed some inhibition of urea uptake by NH4+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号