首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Clostridium perfringens ϵ-toxin is responsible for a severe, often lethal intoxication. In this study, we characterized dominant-negative inhibitors of the ϵ-toxin. Site-specific mutations were introduced into the gene encoding ϵ-toxin, and recombinant proteins were expressed in Escherichia coli. Paired cysteine substitutions were introduced at locations predicted to form a disulfide bond. One cysteine in each mutant was introduced into the membrane insertion domain of the toxin; the second cysteine was introduced into the protein backbone. Mutant proteins with cysteine substitutions at amino acid positions I51/A114 and at V56/F118 lacked detectable cytotoxic activity in a MDCK cell assay. Cytotoxic activity could be reconstituted in both mutant proteins by incubation with dithiothreitol, indicating that the lack of cytotoxic activity was attributable to the formation of a disulfide bond. Fluorescent labeling of the cysteines also indicated that the introduced cysteines participated in a disulfide bond. When equimolar mixtures of wild-type ϵ-toxin and mutant proteins were added to MDCK cells, the I51C/A114C and V56C/F118C mutant proteins each inhibited the activity of wild-type ϵ-toxin. Further analysis of the inhibitory activity of the I51C/A114C and V56C/F118C mutant proteins indicated that these proteins inhibit the ability of the active toxin to form stable oligomeric complexes in the context of MDCK cells. These results provide further insight into the properties of dominant-negative inhibitors of oligomeric pore-forming toxins and provide the basis for developing new therapeutics for treating intoxication by ϵ-toxin.The Clostridium perfringens ϵ-toxin is one of the most potent bacterial toxins (1, 2). The ϵ-toxin can lead to a fatal enterotoxemia characterized by widespread vascular permeability and edema in the heart, lungs, brain, and kidneys (36). The disease most frequently affects livestock animals, though the toxin may also affect humans (79). Because of its extreme potency and the possibility of intoxicating humans, the C. perfringens ϵ-toxin is considered a select agent by the United States Department of Health and Human Services. A vaccine currently is approved for veterinary use, though multiple immunizations are required to provide long-term immunity (1013). There also is an antitoxin approved for veterinary use. However, in the event that an animal exhibits symptoms of intoxication by ϵ-toxin, it is typically too late for the current antitoxin to be effective, and use of the antitoxin is typically limited to prophylactic treatment of unvaccinated animals within a herd (14). There is no treatment currently approved for use in humans. Thus, alternative countermeasures are needed that inhibit the activity of the toxin.One alternative method of countering the cytotoxic activity of bacterial toxins is through dominant-negative inhibitors. Dominant-negative inhibitors are non-cytotoxic mutant forms of active toxins that are able to inhibit the activity of wild-type toxin when the two proteins are mixed together. Such dominant-negative inhibitors have been described for a diverse set of toxins, including Helicobacter pylori VacA (1519), Bacillus anthracis anthrax toxin protective antigen (2025), Bacillus thuringiensis Cry1Ab (26), and Escherichia coli ClyA cytotoxin (27). Like VacA, protective antigen, Cry1Ab, and ClyA, the ϵ-toxin assembles into oligomeric complexes containing multiple toxin monomers (2830). In the case of VacA and protective antigen, the most extensively studied examples of toxins inhibited by dominant-negative mutants, the number of mutations that inactivate the toxins is substantially greater than the number of mutations that lead to a dominant-negative phenotype (16, 17, 24, 31, 32). Although many of the mutations leading to dominant-negative toxins are located within regions of the toxins that are believed to form the membrane insertion domain, some mutations that inactivate the toxins (but are not dominant-negative) also map within the predicted membrane insertion domains (24, 32). Thus, a deeper understanding of the nature of the dominant-negative phenotype is needed.In this study, we sought to generate dominant-negative mutants of the ϵ-toxin. We hypothesized that mutations within the membrane insertion domain of ϵ-toxin, particularly mutations that are expected to restrict movement of this domain, would lead to dominant-negative inhibitors. We expressed wild-type and site-specific mutants of the ϵ-toxin as recombinant proteins in E. coli. The recombinant proteins were purified, and cytotoxicity was assessed using an established cell culture assay. Using this approach, we identified mutant proteins that inhibited the activity of wild-type ϵ-toxin in vitro and determined the mechanism of inhibition.  相似文献   

2.
Summary Statistically designed experiments were used to identify variables important in the 7-dehydroxylation of cholic acid to deoxycholic acid by strains of Clostridium bifermentans in pH-controlled anaerobic fermentation. Deoxycholic acid yields were highest in the presence of 10% CO2 and near pH 7 but were largely unaffected by the strain of organism used, time of bile acid substrate addition, mode of gas delivery, presence of thioglycollate, or the use of OH ion or HCO 3 ion for pH control. However, dehydroxylation was enhanced, and the redox potential remained relatively high, when temperatures were low, inoculum size small, and growth inhibitors were present.Deoxycholic acid yields of up to 40% were observed but the formation of 7-ketodeoxycholic acid side product could not be entirely prevented.  相似文献   

3.
Species of Clostridium are widely distributed in the environment, inhabiting both human and animal gastrointestinal tracts. Clostridium difficile is an important pathogen associated with outbreaks of pseudomembranous colitis and other intestinal disorders, such as diarrhea. In this study, the prevalence of Clostridium spp. and C. difficile, from hospitalized children with acute diarrhea, was examined. These children were admitted to 3 different hospitals for over 12 months. Eighteen (20%) and 19 (21%) stool specimens from children with (90) and without (91) diarrhea respectively, were positive to clostridia. Only 10 C. difficile strains were detected in 5.5% of the stool samples of children with diarrhea. None healthy children (without diarrhea) harbored C. difficile. From these 10 C. difficile, 9 were considered as toxigenic and genotyped as tcdA+/tcdB+ or tcdA-/tcdB+, and 1 strain as nontoxigenic (tcdA-/tdcB-). They were detected by the citotoxicity on VERO cells and by the multiplex-polymerase chain reaction. Thirty clinical fecal extracts produced minor alterations on VERO cells. The presence of C. difficile as a probable agent of acute diarrhea is suggested in several countries, but in this study, the presence of these organisms was not significant. More studies will be necessary to evaluate the role of clostridia or C. difficile in diarrhoeal processes in children.  相似文献   

4.
Clostridium paraputrificum M-21发酵制氢培养条件研究   总被引:9,自引:1,他引:8  
利用类腐败梭状芽孢杆菌M-21(Clostridium paraputn M-21),在37℃、150r/min条件下发酵制氢,以葡萄糖为碳源,蛋白胨为氮源,lmol的葡萄糖可以产生1.05mol的氢气,最终所产气体中有70%H2和30%c02(体积百分数)。最优初始pH范围为7.0—7.5,少量乙酸的存在对氢气的生成有促进作用,若大量存在,会严重抑制茵的生长。在C/N质量比为1.0时,所产氢气体积最多,1g葡萄糖可产生75mL Hz(常温常压)。在高温83℃下对种茵预处理30s促进孢子的萌发,会缩短发酵产氢的时间。以淀粉为碳源,所产氢气体积略微高于葡萄糖,1g淀粉可产生78mL H2(常温常压);以蔗糖为碳源,所产氢气体积略微低于葡萄糖,1g蔗糖可产生72mL H2(常温常压)。该茵不能降解利用羧甲基纤维素,木质素磺酸钠,及纸浆等。  相似文献   

5.
In this work, we produced and evaluated a vaccine based on a β toxoid of Clostridium perfringens type C produced in Escherichia coli (rBT). The non-toxic rBT was innocuous for mice and induced 14 IU mL(-1) of β antitoxin in rabbits, complying with the European Pharmacopeia and CFR9 - USDA guidelines.  相似文献   

6.
1. Beta-Ketothiolase of Clostridium pasteurianum was purified 130-fold by ammonium sulphate fractionation and by column chromatography using DEAE-Sephadex A-50 and hydroxylapatite. Subjected to gel electrophoresis beta-ketothiolase revealed two distinct bands; by isoelectric focusing two enzymes with isoelectric points at pH 4.5 and 7.6 were separated. As established by sucrose density gradient centrifugation the molecular weight of both enzymes was found to be 158000. 2. The condensation reaction was measured by a coupled optical test using beta-hydroxybutyryl-CoA dehydrogenase as auxiliary enzyme and either acetyl-CoA or free coenzyme A plus acetyl-phosphate and phosphotransacetylase (regenerating system) or acetyl-CoA plus regenerating system as substrates. Beta-Ketothiolase from C. pasteurianum used only 20% of the chemically synthesized acetyl-CoA; the enzyme from Alcaligenes eutrophus H 16 used 25%. When the regenerating system was added the condensation reaction continued. The enzyme from C. pasteurianum was inactivated by free coenzyme A, while the enzyme from A. eutrophus was inhibited. When acetyl-CoA was added as the substrate the initial velocity determination was impeded by the lack of linearity. With acetyl-CoA as the substrate the Km-value was found to be 2.5 mM acetyl-CoA. If free CoASH (or acetyl-CoA) plus regenerating system was added the Km was 0.44 mM (0.42 mM) acetyl-CoA. 3. The beta-ketothiolase activity was measured in the direction of acetoacetyl-CoA cleavage by an optical assay following the decrease of the enol and chelate form of acetoacetyl-CoA by absorption measurement at 305 nm. The activity was maximal at 24 nM MgCl2. The apparent Km values for acetoacetyl-CoA were 0.133 mM and 0.105 mM with 0.065 and 0.016 mM CoASH, respectively. The Km-values as calculated for only the keto form of acetoacetyl-CoA were 0.0471 and 0.0372 mM, respectively. The cleavage reaction was inhibited by high acetoacetyl-CoA concentrations; the inihibition was partially relieved by CoASH. In the range of low concentrations of acetoacetyl-CoA only a slight inhibition by CoASH was observed. The Km for CoASH was found to be 0.0288 and 0.0189 mM with 0.09 and 0.045 mM acetoacetyl-CoA, respectively. High concentrations of CoASH exerted an inhibitory effect on the cleavage reaction. With respect to enzyme kinetics and sensitivity to inhibitors and metabolites the beta-ketothiolases of C. pasteurianum and A. eutrophus were rather similar.  相似文献   

7.
M?ssbauer study of CO dehydrogenase from Clostridium thermoaceticum   总被引:2,自引:0,他引:2  
We have studied with M?ssbauer spectroscopy the metal clusters of CO dehydrogenase from Clostridium thermoaceticum. At potentials greater than -200 mV, all of the approximately 12 irons reside in diamagnetic environments and contribute a quadrupole doublet characteristic of [Fe4S4]2+ clusters. At lower potentials a variety of components are observed. About 40% of the Fe appears to belong to one [Fe4S4]1+ cluster. We have also observed the M?ssbauer spectrum (approximately 18% of Fe) of the complex which yields EPR with g = 2.01, 1.81, and 1.65. Also present is a doublet (9% of Fe) with delta EQ = 2.90 mm/s and delta = 0.70 mm/s, values typical of a ferrous FeS4 complex. This component seems to interact with a nickel site to form an EPR-silent complex with half-integral electronic spin. We have also characterized the iron environments of the S = 1/2 NiFeC complex. This complex contributes approximately 20% of the total M?ssbauer absorption when the EPR signal has approximately 0.35 spins/12 Fe. From isomer shift comparisons in the oxidized and CO-reacted states of this center, we speculate that the NiFeC complex may consist of a nickel site exchange-coupled to a [Fe4S4]2+ cluster. Finally, the M?ssbauer and EPR data, taken together, force us to conclude that current preparations, while homogeneous according to purifications standards, are spectroscopically heterogeneous, thus rendering the development of a model of the cluster types and compositions in this enzyme premature.  相似文献   

8.
Summary Clostridium thermohydrosulfuricum 39E produced a cell-bound -glucosidase. It was partially purified 140-fold by solubilizing with Triton X-100, ammonium sulfate treatment, DEAE-Sepharose CL-6B, octyl-Sepharose and acarbose-Sepharose affinity chromatography. The optimum temperature for the action of the enzyme was at 75°C. It had a half-life of 35 min at 75°C, 110 min at 70°C and 46 h at 60°C. The enzyme was stable at pH 5.0–6.0 and had an optimum pH at 5.0–5.5. It hydrolyzed the -1,4-linkages in maltose, maltotriose, maltotetraose and maltohexaose, the rate decreasing in order of higher-sized oligosaccharides. The enzyme preparation also hydrolyzed the -1,6 linkages in isomaltose and isomaltotriose. It rapidly hydrolyzed p-nitrophenyl -d-glucoside (pNPG). The K m values for maltose, isomaltose, panose, maltotriose, and pNPG were 1.85, 2.95, 1.72, 0.58, and 0.31 mm, respectively, at pH 5.5 and 60°C. The enzyme produced glucose from all these substrates. The enzyme preparation did not require any metal ion for activity. The -glucosidase activity was inhibited by acarbose. Offprint requests to: B. C. Saha  相似文献   

9.
The radiation resistance of the spores of a classical strain and of an atypical, heat-resistant strain of Clostridium perfringens was determined. Spores were produced in Ellner's and in a Trypticase broth medium. Approximately 106 viable spores per milliliter were suspended in 0.06 m phosphate buffer and irradiated with γ rays from cobalt-60; the survivors were counted in Tryptone-yeast extract-agar by the Prickett-tube technique. Radiation D values for spores of the atypical strain in phosphate buffer and in cooked-meat broth were 0.23 and 0.30 Mrad, respectively, and the D value of the classical strain was 0.25 Mrad in phosphate buffer. Spores of the classical and atypical strains of C. perfringens type A are characterized by differences in heat resistance; yet, all strains tested demonstrated similar radiation resistance. Also, the spores were more resistant to ionizing radiation in cooked-meat broth than in phosphate buffer.  相似文献   

10.
11.
12.
【目的】采取人工构建复合菌系的方法探索微生物协同降解纤维素的机理及菌间关系。【方法】从一组高温发酵木质纤维素原料产沼气的菌群中分离获得若干菌株,其中一株细菌经16S rRNA基因全序列测序比对后鉴定为地衣芽孢杆菌(Bacillus licheniformis),将该菌株与厌氧纤维素分解菌Clostridium thermocellum CTL-6进行共培养,菌株组合表现出很强的滤纸纤维素分解能力。【结果】两菌共培养9 d,累计滤纸分解量为484.6 mg,滤纸相对分解率高达93.2%;pH变化呈先下降后逐步回升,培养3 d后pH由初始时的7.00降到最低值6.57,第9天升至7.73;菌株组合能同时产生纤维素酶和半纤维素酶,培养过程中两种酶活性大小均呈不断上升趋势,最大值分别为0.32 U/m L和0.57 U/m L。利用HPLC监测了乳酸、甲酸、乙酸、丙酸和丁酸5种有机酸含量的变化,其中丁酸、丙酸代谢量最高,分别为1 477.3 mg/L和1 068.8 mg/L;除丙酸外,其他4种有机酸含量变化趋势与滤纸降解的变化均无明显相关性。5种有机酸总含量的变化与p H的变化趋势一致,表明对pH变化起决定性作用的很可能是某种未检测的酸性较强的物质含量变化。【结论】Bacillus licheniformis能有效促进Clostridium thermocellum CTL-6的纤维素分解活性,且该菌株组合可作为后期进一步构建纤维素甲烷转化复合菌系的基础。  相似文献   

13.
A β-carbonic anhydrases (CAs, EC 4.2.1.1) was recently cloned, purified and characterized kinetically in the pathogen Clostridium perfringens. We report here the first inhibition study of this enzyme (CpeCA). CpeCA was poorly inhibited by iodide and bromide, and was inhibited with KIs in the range of 1–10 mM by a range of anions such as (thio)cyanate, azide, bicarbonate, nitrate, nitrite, hydrogensulfite, hydrogensulfide, stannate, tellurate, pyrophosphate, divanadate, tetraborate, peroxydisulfate, sulfate, iminodisulfonate and fluorosulfonate. Better inhibitory power, with KIs of 0.36–1.0 mM, was observed for cyanide, carbonate, selenate, selenocyanide, trithiocarbonate and diethyldithiocarbamate, whereas the best CpeCA inhibitors were sulfamate, sulfamide, phenylboronic acid and phenylarsonic acid, which had KIs in the range of 7–75 μM. This study thus provides the basis for developing better clostridial enzyme inhibitors with potential as antiinfectives with a new mechanism of action.  相似文献   

14.
添加有机酸对Clostridium acetobutylicum合成丙酮和丁醇的影响   总被引:2,自引:0,他引:2  
为提高丙酮-丁醇梭菌厌氧发酵生产丙酮和丁醇的能力,在发酵过程中添加有机酸(乙酸和丁酸),考察其对菌体生长、溶剂合成影响。实验表明:当添加1.5 g/L乙酸时能够促进菌体的生长,促进丙酮的合成,在600 nm处的最大OD值比参照值高出18.4%,丙酮的最终质量分数提高了21.05%,但不能促进丁醇的合成;当添加1.0g/L丁酸时能够促进菌体生长,促进丁醇的合成,在600 nm处的最大OD比参照值高22.29%,丁醇的最终质量分数比对照组提高了24.32%,但不能促进丙酮的合成。  相似文献   

15.
王欢  武芳  牛昆 《生物技术进展》2020,10(4):432-437
为了提高丙酮丁醇梭菌(Clostridium acetobutylicum)的丁醇耐受能力和培养基总糖产丁醇的转化率,通过原生质体融合的方法,研究了溶菌酶浓度及其作用时间、再生培养基种类、55℃条件下菌体致死时间、不同PEG分子量以及作用时间、Ca^2+和Mg^2+不同的添加量对丙酮丁醇梭菌原生质体制备、融合、再生的影响,得到了一套比较系统的丙酮丁醇梭菌的原生质体融合条件,同时通过气相色谱检测了融合菌的产溶剂能力并计算总糖转化率。结果显示,最终得到的215I菌株的总糖转化率比原始菌株提高了34.7%,产丁醇能力比原始菌株提高了32.2%,并且发现1株融合菌能产生新物质。原生质体融合方法在丙酸丁醇梭菌育种方面有广泛的应用潜力,通过融合得到的菌株为丁醇生产奠定了基础。  相似文献   

16.
玉米皮作为玉米淀粉加工的副产物,是一种可用于生产液体燃料的潜在廉价优质的生物质资源。本文以玉米皮为原料,对拜氏梭菌发酵生产丁醇进行了研究。实验结果表明,玉米皮首先在最优的预处理温度140℃下使用0.5%硫酸水溶液以固液比1∶8处理20 min,再添加200 IU/g底物糖化酶、1.0 IU/g底物木聚糖酶进行酶解,可以使原料中的淀粉和半纤维素转化为可发酵糖,此时水解液中的总糖浓度为50.46 g/L。然后使用1.0%的活性炭对水解液进行脱毒处理以去除发酵抑制物,再进行丁醇发酵,丁醇产量为9.72 g/L,总溶剂产量可达14.09 g/L,糖醇转化率为35.1%。上述研究结果证明玉米皮作为一种粮食加工废弃物用于液体燃料丁醇的生产在技术上是完全可行的。  相似文献   

17.
CpGH89 is a large multimodular enzyme produced by the human and animal pathogen Clostridium perfringens. The catalytic activity of this exo-α-D-N-acetylglucosaminidase is directed towards a rare carbohydrate motif, N-acetyl-β-D-glucosamine-α-1,4-D-galactose, which is displayed on the class III mucins deep within the gastric mucosa. In addition to the family 89 glycoside hydrolase catalytic module this enzyme has six modules that share sequence similarity to the family 32 carbohydrate-binding modules (CBM32s), suggesting the enzyme has considerable capacity to adhere to carbohydrates. Here we suggest that two of the modules, CBM32-1 and CBM32-6, are not functional as carbohydrate-binding modules (CBMs) and demonstrate that three of the CBMs, CBM32-3, CBM32-4, and CBM32-5, are indeed capable of binding carbohydrates. CBM32-3 and CBM32-4 have a novel binding specificity for N-acetyl-β-D-glucosamine-α-1,4-D-galactose, which thus complements the specificity of the catalytic module. The X-ray crystal structure of CBM32-4 in complex with this disaccharide reveals a mode of recognition that is based primarily on accommodation of the unique bent shape of this sugar. In contrast, as revealed by a series of X-ray crystal structures and quantitative binding studies, CBM32-5 displays the structural and functional features of galactose binding that is commonly associated with CBM family 32. The functional CBM32s that CpGH89 contains suggest the possibility for multivalent binding events and the partitioning of this enzyme to highly specific regions within the gastrointestinal tract.  相似文献   

18.
19.
Sharkey MA  Gori A  Capone M  Engel PC 《The FEBS journal》2012,279(17):3003-3009
Active-site mutants of glutamate dehydrogenase from Clostridium?symbiosum have been designed and constructed and the effects on coenzyme preference evaluated by detailed kinetic measurements. The triple mutant F238S/P262S/D263K shows complete reversal in coenzyme selectivity from NAD(H) to NADP(H) with retention of high levels of catalytic activity for the new coenzyme. For oxidized coenzymes, k(cat) /K(m) ratios of the wild-type and triple mutant enzyme indicate a shift in preference of approximately 1.6?×?10(7) -fold, from ~?80?000-fold in favour of NAD(+) to ~?200-fold in favour of NADP(+) . For reduced coenzymes the corresponding figure is 1.7?×?10(4) -fold, from ~?1000-fold in favour of NADH to ~?17-fold in favour of NADPH. A fourth mutation (N290G), previously identified as having a potential bearing on coenzyme specificity, did not engender any further shift in preference when incorporated into the triple mutant, despite having a significant effect when expressed as a single mutant.  相似文献   

20.
Revathi G  Fralick JA  Rolfe RD 《Anaerobe》2011,17(3):125-129
Clostridium difficile is a nosocomial pathogen identified as the cause of antibiotic-associated diarrhea and colitis. In this study, we have documented the lysogeny of a C.?difficile bacteriophage in hamsters during C.?difficile infection. The lysogens isolated from the hamsters were toxin typed and their phage integration site was confirmed by PCR. Through toxin ELISA it was found that the toxin production in the in?vivo isolated lysogens was affected due to ФCD119 lysogenization as in the case of in?vitro isolated ФCD119 lysogens. Together our findings indicate that a baceriophage can lysogenize its C.?difficile host even during the infection process and highlights the importance of lysogeny of C.?difficile phages as an evolutionary adaptation for survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号