首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aflatoxins are produced by Aspergillus flavus and A. parasiticus in oil-rich seed and grain crops and are a serious problem in agriculture, with aflatoxin B1 being the most carcinogenic natural compound known. Sexual reproduction in these species occurs between individuals belonging to different vegetative compatibility groups (VCGs). We examined natural genetic variation in 758 isolates of A. flavus, A. parasiticus and A. minisclerotigenes sampled from single peanut fields in the United States (Georgia), Africa (Benin), Argentina (Córdoba), Australia (Queensland) and India (Karnataka). Analysis of DNA sequence variation across multiple intergenic regions in the aflatoxin gene clusters of A. flavus, A. parasiticus and A. minisclerotigenes revealed significant linkage disequilibrium (LD) organized into distinct blocks that are conserved across different localities, suggesting that genetic recombination is nonrandom and a global occurrence. To assess the contributions of asexual and sexual reproduction to fixation and maintenance of toxin chemotype diversity in populations from each locality/species, we tested the null hypothesis of an equal number of MAT1-1 and MAT1-2 mating-type individuals, which is indicative of a sexually recombining population. All samples were clone-corrected using multi-locus sequence typing which associates closely with VCG. For both A. flavus and A. parasiticus, when the proportions of MAT1-1 and MAT1-2 were significantly different, there was more extensive LD in the aflatoxin cluster and populations were fixed for specific toxin chemotype classes, either the non-aflatoxigenic class in A. flavus or the B1-dominant and G1-dominant classes in A. parasiticus. A mating type ratio close to 1∶1 in A. flavus, A. parasiticus and A. minisclerotigenes was associated with higher recombination rates in the aflatoxin cluster and less pronounced chemotype differences in populations. This work shows that the reproductive nature of the population (more sexual versus more asexual) is predictive of aflatoxin chemotype diversity in these agriculturally important fungi.  相似文献   

2.
3.
Aspergillus lentulus was described in 2005 as a new species within the A. fumigatus sensu lato complex. It is an opportunistic human pathogen causing invasive aspergillosis with high mortality rates, and it has been isolated from clinical and environmental sources. The species is morphologically nearly identical to A. fumigatus sensu stricto, and this similarity has resulted in their frequent misidentification. Comparative studies show that A. lentulus has some distinguishing growth features and decreased in vitro susceptibility to several antifungal agents, including amphotericin B and caspofungin. Similar to the once-presumed-asexual A. fumigatus, it has only been known to reproduce mitotically. However, we now show that A. lentulus has a heterothallic sexual breeding system. A PCR-based mating-type diagnostic detected isolates of either the MAT1-1 or MAT1-2 genotype, and examination of 26 worldwide clinical and environmental isolates revealed similar ratios of the two mating types (38% versus 62%, respectively). MAT1-1 and MAT1-2 idiomorph regions were analyzed, revealing the presence of characteristic alpha and high-mobility-group (HMG) domain genes, together with other more unusual features such as a MAT1-2-4 gene. We then demonstrated that A. lentulus possesses a functional sexual cycle with mature cleistothecia, containing heat-resistant ascospores, being produced after 3 weeks of incubation. Recombination was confirmed using molecular markers. However, isolates of A. lentulus failed to cross with highly fertile strains of A. fumigatus, demonstrating reproductive isolation between these sibling species. The discovery of the A. lentulus sexual stage has significant implications for the management of drug resistance and control of invasive aspergillosis associated with this emerging fungal pathogen.  相似文献   

4.
5.
6.
7.
Aspergillus flavus and A. parasiticus are the two most important aflatoxin‐producing fungi responsible for the contamination of agricultural commodities worldwide. Both species are heterothallic and undergo sexual reproduction in laboratory crosses. Here we examine the possibility of interspecific matings between A. flavus and A. parasiticus. These species can be distinguished morphologically and genetically, as well as by their mycotoxin profiles. Aspergillus flavus produces both B aflatoxins and cyclopiazonic acid (CPA), B aflatoxins or CPA alone, or neither mycotoxin; Aspergillus parasiticus produces B and G aflatoxins or the aflatoxin precursor O‐methylsterigmatocystin, but not CPA. Only four of forty‐five attempted interspecific crosses between opposite mating types of A. flavus and A. parasiticus were fertile and produced viable ascospores. Single ascospore strains from each cross were shown to be recombinant hybrids using multilocus genotyping and array comparative genome hybridization. Conidia of parents and their hybrid progeny were haploid and predominantly monokaryons and dikaryons based on flow cytometry. Multilocus phylogenetic inference showed that experimental hybrid progeny were grouped with naturally occurring A. flavus L strain and A. parasiticus. Higher total aflatoxin concentrations in some F1 progeny strains compared to midpoint parent aflatoxin levels indicate synergism in aflatoxin production; moreover, three progeny strains synthesized G aflatoxins that were not produced by the parents, and there was evidence of allopolyploidization in one strain. These results suggest that hybridization is an important diversifying force resulting in the genesis of novel toxin profiles in these agriculturally important fungi.  相似文献   

8.
We studied the role of the regulatory gene aflR and its product, AflR, in the biosynthesis of aflatoxin in Aspergillus. Western blot and enzyme-linked immunosorbent assay analyses revealed that aflatoxin B1 accumulation was directly related to AflR expression and was regulated by various environmental and nutritional conditions, including temperature, air supply, carbon source, nitrogen source, and zinc availability. Expression of an aflatoxin biosynthetic pathway structural gene, omtA, was regulated by the presence of AflR. Induction patterns for aflR mRNA and AflR were correlated with that for omtA mRNA in an aflatoxin-producing strain of Aspergillus parasiticus. Analysis of non-aflatoxin-producing strains of A. flavus, A. sojae, and A. oryzae grown in medium suitable for aflatoxin B1 production showed that both aflR mRNA and AflR production were present; however, omtA mRNA production was not detected in any of these examined strains. AflR in the A. oryzae strain was regulated by carbon source and temperature in a manner similar to that seen with A. parasiticus.  相似文献   

9.
Verticillium dahliae is a cosmopolitan, soilborne fungus that causes a significant wilt disease on a wide variety of plant hosts including economically important crops, ornamentals, and timber species. Clonal expansion through asexual reproduction plays a vital role in recurring plant epidemics caused by this pathogen. The recent discovery of recombination between clonal lineages and preliminary investigations of the meiotic gene inventory of V. dahliae suggest that cryptic sex appears to be rare in this species. Here we expanded on previous findings on the sexual nature of V. dahliae. Only 1% of isolates in a global collection of 1120 phytopathogenic V. dahliae isolates contained the MAT1-1 idiomorph, whereas 99% contained MAT1-2. Nine unique multilocus microsatellite types comprised isolates of both mating types, eight of which were collected from the same substrate at the same time. Orthologs of 88 previously characterized sex-related genes from fungal model systems in the Ascoymycota were identified in the genome of V. dahliae, out of 93 genes investigated. Results of RT-PCR experiments using both mating types revealed that 10 arbitrarily chosen sex-related genes, including MAT1-1-1 and MAT1-2-1, were constitutively expressed in V. dahliae cultures grown under laboratory conditions. Ratios of non-synonymous (amino-acid altering) to synonymous (silent) substitutions in V. dahliae MAT1-1-1 and MAT1-2-1 sequences were indistinguishable from the ratios observed in the MAT genes of sexual fungi in the Pezizomycotina. Patterns consistent with strong purifying selection were also observed in 18 other arbitrarily chosen V. dahliae sex-related genes, relative to the patterns in orthologs from fungi with known sexual stages. This study builds upon recent findings from other laboratories and mounts further evidence for an ancestral or cryptic sexual stage in V. dahliae.  相似文献   

10.
Paracoccidioides brasiliensis has been classified in the phylum Ascomycota, order Onygenales, family Ajellomycetaceae, even in the absence of a known sexual cycle or mating system. The objective of this work was to determine the presence of the mating type locus in 71 P. brasiliensis isolates from various sources. A PCR assay using specific primers for the MAT 1 gene was developed and applied for the detection of such genes. Two heterothallic groups (MAT1-1 or MAT1-2) were recognized and, in some isolates, gene expression was confirmed indicating the existence of a basal gene expression. The distribution of two mating type loci in the studied population suggested that sexual reproduction might occur in P. brasiliensis. This finding points towards the possibility of applying a more precise definition of the concept of biological species to P. brasiliensis. Further studies should be conducted to confirm the sexual capacity of this fungus and its implications among phylogenetic species and geographical distribution.  相似文献   

11.
Two mutant strains of Aspergillus parasiticus, both deficient in aflatoxin production, were used to elucidate the biosynthetic pathway of this mycotoxin. One of the mutants, A. parasiticus ATCC 24551, was capable of accumulating large amounts of averufin, and the other, A. parasiticus 1-11-105 wh-1, accumulated versicolorin A. The averufin producing mutant efficiently converted 14C-labeled versiconal acetate, versicolorin A, and sterigmatocystin into aflatoxin B1 and G1, indicating that averufin preceded these compounds in the aflatoxin biosynthetic pathway. In the presence of dichlorvos (dimethyl 2,2-dichlorovinyl phosphate), a known inhibitor of aflatoxin biosynthesis, the conversion of versicolorin A and sterigmatocystin was unaffected, but the conversion of versiconal acetate was markedly inhibited. The mutant accumulating versicolorin A incorporated 14C-labeled acetate, averufin, and versiconal acetate into versicolorin A. In the presence of dichlorvos, however, the major conversion product was versiconal acetate. This strongly suggested that dichlorvos inhibited the conversion step of versiconal acetate into versicolorin A. This mutant resumed production of aflatoxin B1 if sterigmatocystin was added to the resting cell cultures, indicating that the mutant was blocked at the enzymatic step catalyzing the conversion of versicolorin A into sterigmatocystin, and as a result was incapable of aflatoxin production. The experimental evidence is thus provided for the involvement and interrelationship of three anthraquinones (averufin, versiconal acetate, and versicolorin A) and a xanthone (sterigmatocystin) in aflatoxin biosynthesis. A pathway for the biosynthesis of aflatoxin B1 is proposed to be: acetate →→→ averufin → versiconal acetate → versicolorin A → sterigmatocystin → aflatoxin B1.  相似文献   

12.
Berkeleyomyces basicola and Berkeleyomyces rouxiae, two sister species previously treated collectively as Thielaviopsis basicola, reside in the Ceratocystidaceae (Microascales, Ascomycota). Both species are important root pathogens of many important agricultural crops and ornamental plants. Although T. basicola has been known for more than 150y, a sexual state has never been found and it has been assumed to be an asexual pathogen. The aim of this study was to determine the mating strategy of the two Berkeleyomyces species. Investigation of the genome sequences of two B. basicola isolates allowed for the complete characterization of the MATlocus, revealing that it has a typical heterothallic mating system with the MAT1-1andMAT1-2 idiomorphs occurring in different isolates. PCR amplification using mating type primers developed in this study, showed that the MAT1-1-1andMAT1-2-1 genes were also present in different isolates of B. rouxiae. Pairing of isolates representing the two mating types of both species,using a variety of techniques failed to produce sexual structures. Although we have found no direct evidence that they reproduce sexually, these fungi are clearly heterothallic with both mating types occurring in some countries suggesting that a cryptic sexual cycle could exist for them.  相似文献   

13.
Aflatoxins comprise a group of polyketide-derived carcinogenic mycotoxins produced byAspergillus parasiticus andAspergillus flavus. By transformation with a disruption construct, pXX, we disrupted the aflatoxin pathway inA. parasiticus SRRC 2043, resulting in the inability of this strain to produce aflatoxin intermediates as well as a major yellow pigment in the transformants. The disruption was attributed to a single-crossover, homologous integration event between pXX and the recipientA. parasiticus genome at a specific locus, designatedpksA. Sequence analysis suggest thatpksA is a homolog of theAspergillus nidulans wA gene, a polyketide synthase gene involved in conidial wall pigment biosynthesis. The conservedβ-ketoacyl synthase, acyltransferase and acyl carrier-protein domains were present in the deduced amino acid sequence of thepksA product. Noβ-ketoacyl reductase and enoyl reductase domains were found, suggesting thatpksA does not encode catalytic activities for processingβ-carbon similar to those required for long chain fatty acid synthesis. ThepksA gene is located in the aflatoxin pathway gene cluster and is linked to thenor-1 gene, an aflatoxin pathway gene required for converting norsolorinic acid to averantin. These two genes are divergently transcribed from a 1.5 kb intergenic region. We propose thatpksA is a polyketide synthase gene required for the early steps of aflatoxin biosynthesis.  相似文献   

14.
Aspergillus flavus and Aspergillus parasiticus cause perennial infection of agriculturally important crops in tropical and subtropical areas. Invasion of crops by these fungi may result in contamination of food and feed by potent carcinogenic aflatoxins. Consumption of aflatoxin contaminated foods is a recognised risk factor for human hepatocellular carcinoma (HCC) and may contribute to the high incidence of HCC in Southeast Asia. This study conducted a survey of Vietnamese crops (peanuts and corn) and soil for the presence of aflatoxigenic fungi and used microsatellite markers to investigate the genetic diversity of Vietnamese Aspergillus strains. From a total of 85 samples comprising peanut (25), corn (45) and soil (15), 106 strains were isolated. Identification of strains by colony morphology and aflatoxin production found all Vietnamese strains to be A. flavus with no A. parasiticus isolated. A. flavus was present in 36.0% of peanut samples, 31.1% of corn samples, 27.3% of farmed soil samples and was not found in virgin soil samples. Twenty-five per cent of the strains produced aflatoxins. Microsatellite analysis revealed a high level of genetic diversity in the Vietnamese A. flavus population. Clustering, based on microsatellite genotype, was unrelated to aflatoxin production, geographic origin or substrate origin.  相似文献   

15.
16.
Aflatoxins are polyketide-derived, toxic, and carcinogenic secondary metabolites produced primarily by two fungal species, Aspergillus flavus and A. parasiticus, on crops such as corn, peanuts, cottonseed, and treenuts. Regulatory guidelines issued by the U.S. Food and Drug Administration (FDA) prevent sale of commodities if contamination by these toxins exceeds certain levels. The biosynthesis of these toxins has been extensively studied. About 15 stable precursors have been identified. The genes involved in encoding the proteins required for the oxidative and regulatory steps in the biosynthesis are clustered in a 70 kb portion of chromosome 3 in the A. flavus genome. With the characterization of the gene cluster, new insights into the cellular processes that govern the genes involved in aflatoxin biosynthesis have been revealed, but the signaling processes that turn on aflatoxin biosynthesis during fungal contamination of crops are still not well understood. New molecular technologies, such as gene microarray analyses, quantitative polymerase chain reaction (PCR), and chromatin immunoprecipitation are being used to understand how physiological stress, environmental and soil conditions, receptivity of the plant, and fungal virulence lead to episodic outbreaks of aflatoxin contamination in certain commercially important crops. With this fundamental understanding, we will be better able to design improved non-aflatoxigenic biocompetitive Aspergillus strains and develop inhibitors of aflatoxin production (native to affected crops or otherwise) amenable to agricultural application for enhancing host-resistance against fungal invasion or toxin production. Comparisons of aflatoxin-producing species with other fungal species that retain some of the genes required for aflatoxin formation is expected to provide insight into the evolution of the aflatoxin gene cluster, and its role in fungal physiology. Therefore, information on how and why the fungus makes the toxin will be valuable for developing an effective and lasting strategy for control of aflatoxin contamination.  相似文献   

17.
18.
Until recently, only three species (Aspergillus flavus, A. parasiticus and A. nomius) have been widely recognized as producers of aflatoxin. In this study we examine aflatoxin production by two other species, A. tamarii and A. ochraceoroseus, the latter of which also produces sterigmatocystin. Toxin-producing strains of A. tamarii and A. ochraceoroseus were examined morphologically, and toxin production was assayed on different media at different pH levels using thin layer chromatography and a densitometer. Genomic DNA of these two species was probed with known aflatoxin and sterigmatocystin biosynthesis genes from A. flavus, A. parasiticus and A. nidulans. Under the high stringency conditions, A. tamarii DNA hybridized to all four of the A. flavus and A. parasiticus gene probes, indicating strong similarities in the biosynthetic pathway genes of these three species. The A. ochraceoroseus DNA hybridized weakly to the A. flavus and A. parasiticus verB gene probe, and to two of the three A. nidulans probes. These data indicate that, at the DNA level, the aflatoxin and sterigmatocystin biosynthetic pathway genes for A. ochraceoroseus are somewhat different from known pathway genes. Received: 21 May 1999 / Received revision: 17 November 1999 / Accepted: 3 December 1999  相似文献   

19.
《Biological Control》2000,17(2):147-154
The effect of vegetative compatibility on the inhibition of aflatoxin B1 production by Aspergillus parasiticus was examined using nonaflatoxigenic strains. Nonaflatoxigenic white-conidial mutants were paired in different proportions on an agar medium with aflatoxigenic yellow-conidial mutants belonging to the same isolate, to the same vegetative compatibility group but with the original wild types differing in phenotype, and to different vegetative compatibility groups. Heterokaryosis as a result of hyphal anastomosis was detected by the presence of conidiogenous structures with a mixture of green and parental (white and/or yellow) chains of conidia. Sclerotium production (number and dry weight) was significantly greater in pairings of compatible strains that formed heterokaryons than in pairings of strains from different vegetative compatibility groups. In contrast, there were no consistent differences in aflatoxin B1 inhibition by nonaflatoxigenic strains in pairings from the same vegetative compatibility group and pairings from different groups. Therefore, the composition of vegetative compatibility groups within a population may be of minor importance in predicting the efficacy of a particular nonaflatoxigenic strain for the biological control of aflatoxin contamination of crops.  相似文献   

20.
It was long been noted that secondary metabolism is associated with fungal development. In Aspergillus nidulans, conidiation and mycotoxin production are linked by a G protein signaling pathway. Also in A. nidulans, cleistothecial development and mycotoxin production are controlled by a gene called veA. Here we report the characterization of a veA ortholog in the aflatoxin-producing fungus A. parasiticus. Cleistothecia are not produced by Aspergillus parasiticus; instead, this fungus produces spherical structures called sclerotia that allow for survival under adverse conditions. Deletion of veA from A. parasiticus resulted in the blockage of sclerotial formation as well as a blockage in the production of aflatoxin intermediates. Our results indicate that A. parasiticus veA is required for the expression of aflR and aflJ, which regulate the activation of the aflatoxin gene cluster. In addition to these findings, we observed that deletion of veA reduced conidiation both on the culture medium and on peanut seed. The fact that veA is necessary for conidiation, production of resistant structures, and aflatoxin biosynthesis makes veA a good candidate gene to control aflatoxin biosynthesis or fungal development and in this way to greatly decrease its devastating impact on health and the economy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号