首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nineteenth century theologian, author and poet Charles Kingsley was a notable populariser of Darwinian evolution. He championed Darwin’s cause and that of honesty in science for more than a decade from 1859 to 1871. Kingsley’s interpretation of evolution shaped his theology, his politics and his views on race. The relationship between men and apes set the context for Kingsley’s consideration of these issues. Having defended Darwin for a decade in 1871 Kingsley was dismayed to read Darwin’s account of the evolution of morals in Descent of Man. He subsequently distanced himself from Darwin’s conclusions even though he remained an ardent evolutionist until his death in 1875.  相似文献   

2.
ABSTRACT

Ernst Haeckel (1834–1919) is most recalled in the history of biology for his Recapitulation Theory and the allegedly fudged illustrations of embryos that he presented in support of that case. Less well known is his contribution to abiogenesis theory, which he incorporated into evolutionary theory. In so doing, Haeckel, a vitriolic atheist, was instrumental in inserting atheism into the evolutionary mindset. While anti-evolution propaganda commonly makes Darwin out to be the villain of the piece, the association of evolution in the broad sense of the word with atheism arises more from the Haeckelian legacy than from Darwin’s initially conciliatory deism or Huxley’s non-committal agnosticism.  相似文献   

3.
Julian Huxley’s (1887–1975) contribution to twentieth-century biology and science popularisation is well documented. What has not been appreciated so far is that despite Huxley’s eminence as a public scientific figure and the part that he played in the rise of experimental zoology in Britain in the 1920s, his own research was often heavily criticised in this period by his colleagues. This resulted in numerous difficulties in getting his scientific research published in the early 1920s. At this time, Huxley started his popular science career. Huxley’s friends criticised him for engaging in this actively and attributed the publication difficulties to the time that he allocated to popular science. The cause might also have its roots in his self-professed inability to delve deeply into the particularities of research. This affected Huxley’s standing in the scientific community and seems to have contributed to the fact that Huxley failed twice in the late 1920s to be elected to the Royal Society. This picture undermines to some extent Peter J. Bowler’s recent portrayal of Huxley as a science populariser.  相似文献   

4.
The interest of F. Macfarlane Burnet in host–parasite interactions grew through the 1920s and 1930s, culminating in his book, Biological Aspects of Infectious Disease (1940), often regarded as the founding text of disease ecology. Our knowledge of the influences on Burnet’s ecological thinking is still incomplete. Burnet later attributed much of his conceptual development to his reading of British theoretical biology, especially the work of Julian Huxley and Charles Elton, and regretted he did not study Theobald Smith’s Parasitism and Disease (1934) until after he had formulated his ideas. Scholars also have adduced Burnet’s fascination with natural history and the clinical and public health demands on his research effort, among other influences. I want to consider here additional contributions to Burnet’s ecological thinking, focusing on his intellectual milieu, placing his research in a settler society with exceptional expertise in environmental studies and pest management. In part, an ‘‘ecological turn’’ in Australian science in the 1930s, derived to a degree from British colonial scientific investments, shaped Burnet’s conceptual development. This raises the question of whether we might characterize, in postcolonial fashion, disease ecology, and other studies of parasitism, as successful settler colonial or dominion science.  相似文献   

5.
Historians of science have neglected the French Academician Réaumur, whose work is emblematic of a modern conception of science that joins together technology, science, and society. Réaumur practised rigorous experimentation on organisms, and uncovered industrial and utilitarian secrets which he communicated to the public. His patronage was essential in boosting the generation of young naturalists of the 1740s who advanced further the experimental approach to the study of nature. For Réaumur, his work was not separate from his mission to disclose and communicate previously restricted knowledge for the benefits of science and society.  相似文献   

6.
Alfred Russel Wallace (1823–1913) and Charles Darwin (1809–1882) are honored as the founders of modern evolutionary biology. Accordingly, much attention has focused on their relationship, from their independent development of the principle of natural selection to the receipt by Darwin of Wallace’s essay from Ternate in the spring of 1858, and the subsequent reading of the Wallace and Darwin papers at the Linnean Society on 1 July 1858. In the events of 1858 Wallace and Darwin are typically seen as central players, with Darwin’s friends Charles Lyell (1797–1875) and Joseph Dalton Hooker (1817–1911) playing supporting roles. This narrative has resulted in an under-appreciation of a more central role for Charles Lyell as both Wallace’s inspiration and foil. The extensive anti-transmutation arguments in Lyell’s landmark Principles of Geology were taken as the definitive statement on the subject. Wallace, in his quest to solve the mystery of species origins, engaged with Lyell’s arguments in his private field notebooks in a way that is concordant with his engagement with Lyell in the 1855 and 1858 papers. I show that Lyell was the object of Wallace’s Sarawak Law and Ternate papers through a consideration of the circumstances that led Wallace to send his Ternate paper to Darwin, together with an analysis of the material that Wallace drew upon from the Principles. In this view Darwin was, ironically, intended for a supporting role in mediating Wallace’s attempted dialog with Lyell.  相似文献   

7.
This paper investigates the relationship between the eminent 19th-century naturalists Charles Darwin and Carl Vogt. On two separate occasions, Vogt asked Darwin for permission to translate some of the latter’s books into German, and in both cases Darwin refused. It has generally been assumed that Darwin turned down Vogt as a translator because of the latter’s reputation as a radical libertine who was extremely outspoken in his defence of scientific materialism and atheism. However, this explanation does not fit the facts, since, on closer investigation, Darwin not only gave serious consideration to engaging Vogt as the German translator of two of his books, albeit ultimately rejecting him, but he also collaborated with Vogt on the French editions of his works. In this paper we argue that this was not because Darwin was unaware of Vogt’s personality and blunt writing style; rather, Darwin seems to have decided that the benefits he would gain from their association would clearly outweigh the risk of offending some of his readers: in working with Vogt, who was not only a knowledgeable scientist but also an avowed adherent of Darwinism, Darwin could be assured of the scientific quality of the translation and of an edition that would not distort his central concepts – both of which were by no means matters of course in 19th-century translations of scientific works.  相似文献   

8.
9.
For decades historians of science and science writers in general have maintained that Charles Darwin was not the ‘naturalist’ or ‘official naturalist’ during the 1831–1836 surveying voyage of HMS Beagle but instead Captain Robert FitzRoy’s ‘companion’, ‘gentleman companion’ or ‘dining companion’. That is, Darwin was primarily the captain’s social companion and only secondarily and unofficially naturalist. Instead, it is usually maintained, the ship’s surgeon Robert McCormick was the official naturalist because this was the default or official practice at the time. Although these views have been repeated in countless accounts of Darwin’s life, this essay aims to show that they are incorrect.  相似文献   

10.
A critical review of Darwin's publications shows that he did not dissert much about amphibians, in comparison with the other tetrapods. However, in “A Naturalist's Voyage round the World”, Darwin described for the first time several amphibian species and was surprised by their peculiar way of life, terrestrial or euryhaline. These amphibian observations around the world led Darwin to discuss evolutionnary notions, like developmental heterochronies or evolving convergences, and later to illustrate his famous natural selection theory. This is confirmed, for example, by the publication of “On the Origin of Species” where Darwin ironically questioned creation theory, trying to explain the absence of amphibians on oceanic islands. Lamarck also considered amphibians as relevant material to illustrate his theory of acquired character heredity. These historical uses of lissamphibians as evolutionary models have been mostly realized before any amphibian fossil discovery, i.e. out of a palaeontological context.  相似文献   

11.
At age 80, Antony van Leeuwenhoek was a world-famous scientist who came from a prosperous Delft family with a heritage of public service. He continued that tradition by serving in paid municipal offices. Self-taught, he began his scientific career in his 40s, when he began making hundreds of tiny single-lens microscopes. Pioneering the use of now-common microscopic techniques, he was the first human to see microbes and microscopic structures in animals, plants, and minerals. Over 50 years, he wrote only letters, more than 300 of them, and published half of them himself. More than a hundred were published in translation in the Royal Society’s Philosophical Transactions. Today, Leeuwenhoek is considered in the lesser rank of scientists and is not well known outside of his homeland. Recent archival research in Delft has contributed new information about his life that helps to contextualize his science, but much remains to be learned.  相似文献   

12.
Conclusion Publication of the Vestiges and the rather primitive theory of evolution it expounded thus played a significant role in the careers of Darwin and Wallace. In addition, in spite of his poor opinion of the Vestiges, it presented Huxley with a convenient topic for critical discussion and the opportunity to focus more attention on the subject of evolution. The dynamic interactions among these leading figures of nineteenth-century natural science helped spur the development of more sophisticated models of evolution.Darwin had a proper appreciation of Chambers's contribution to evolutionary thought, although he fully recognized the shortcomings of this work. He understood the importance of allowing fresh ideas about organic change to be ventilated. However, he was primarily concerned with his own theory and viewed all developments in evolutionary biology from this perspective. If he did not give full consideration to Chambers and his book early on, it was due mainly to his feeling that the concepts in the Vestiges were very different from his own; he was therefore reluctant to embrace them as the forerunners of his own theory. As a scholar, he was also troubled by the scientific errors in the book. However, the record demonstrates that he attempted to make amends for any oversight on his part. His generous letter to Chambers's daughter, and his gracious treatment of Chambers during the brief time the latter lived in London, are ample proof of that.The attacks of Huxley, Sedgwick, and other prominent natural historians and geologists at the time, the problems inherent in Chambers's evolutionary theory, and the publication of the Origin, are the major reasons why the Vestiges became a neglected work. Nevertheless, Chambers's contribution will always stand out because, together with those of other late eighteenth- and early nineteenth-century predecessors of Darwin, it laid the foundations of modern evolutionary thought and, more importantly, helped prepare the scientific community for the more fully developed ideas of Darwin and Wallace.  相似文献   

13.
In 1930, while R.A. Fisher, J.B.S. Haldane, E.B. Ford and S.G. Wright were laying the foundations of what a decade later J.S. Huxley dubbed “Modern Synthesis”, E.S. Russell published a groundbreaking work, The Interpretation of Development and Heredity. In this book Russell not only condemned Mendelian genetics and neo-Darwinism, but also proposed an alternative synthesis unifying heredity, development, and evolution. The book did not represent the work of a mind operating in isolation. Rather, it was a synthetic work connecting ideas and doctrines of many influential scientists working in Europe and the USA. Through the analysis of archival documents and rarely or never mentioned sources, this article provides an unconventional picture of Russell’s theoretical biology. It will be shown that Russell was an international celebrity; he was at the centre of a large network of scholars who shared his ideas and insights. He was one of several biologists arguing for a different synthesis; a synthesis perhaps less visible, less institutionalised, and less ‘modern’, nevertheless with its influential advocates and international support. Finally, this study shows that Russell’s synthesis was not rooted in the classic pantheon of towering figures in the history of biology, i.e. Darwin, Wallace, and Mendel, but was based on the teachings of Kant, Goethe, Cuvier, von Baer, and Müller.  相似文献   

14.
Historians and philosophers of science agree that Darwin had an understanding of species which led to a workable theory of their origins. To Darwin species did not differ essentially from ‘varieties’ within species, but were distinguishable in that they had developed gaps in formerly continuous morphological variation. Similar ideas can be defended today after updating them with modern population genetics. Why then, in the 1930s and 1940s, did Dobzhansky, Mayr and others argue that Darwin failed to understand species and speciation? Mayr and Dobzhansky argued that reproductively isolated species were more distinct and ‘real’ than Darwin had proposed. Believing species to be inherently cohesive, Mayr inferred that speciation normally required geographic isolation, an argument that he believed, incorrectly, Darwin had failed to appreciate. Also, before the sociobiology revolution of the 1960s and 1970s, biologists often argued that traits beneficial to whole populations would spread. Reproductive isolation was thus seen as an adaptive trait to prevent disintegration of species. Finally, molecular genetic markers did not exist, and so a presumed biological function of species, reproductive isolation, seemed to delimit cryptic species better than character-based criteria like Darwin’s. Today, abundant genetic markers are available and widely used to delimit species, for example using assignment tests: genetics has replaced a Darwinian reliance on morphology for detecting gaps between species. In the 150th anniversary of The Origin of Species, we appear to be returning to more Darwinian views on species, and to a fuller appreciation of what Darwin meant.  相似文献   

15.
Charles Darwin is well known for his studies on the expression of emotions in animals and humans and as founding father of the concept of sexual selection. Yet it is commonly believed that the various arguments Darwin developed about behavior were usually illustrated only by anecdotes and observations recounted by explorers, naturalists, or zookeepers, and lacking any experimental approach. Here we show that this is not true. In his last book, The Formation of Vegetable Mould Through the Action of Worms (1881), Darwin mentions a series of meticulous experiments he ran to test his hypotheses about why earthworms plug their burrows and comes to the conclusion that earthworms seem to act in an intelligent way. His study can still function as a prime example of how to design an experiment for testing hypotheses. Only one part was missing in Darwin’s research: statistical analyses. We retrieved his data and analyzed them statistically. Based on these results, we cannot reject his conclusion as the statistical analyses confirmed Darwin was right. This shows that Charles Darwin already used a hypothetico-deductive approach, and he can thus be seen as the first true behavioral ecologist—a representative of a discipline that has been recognized for only about a hundred years.  相似文献   

16.
Darwin offered an intriguing answer to the species problem. He doubted the existence of the species category as a real category in nature, but he did not doubt the existence of those taxa called “species”. And despite his scepticism of the species category, Darwin continued using the word “species”. Many have said that Darwin did not understand the nature of species. Yet his answer to the species problem is both theoretically sound and practical. On the theoretical side, Darwin’s answer is confirmed by contemporary biology, and it offers a more satisfactory answer to the species problem than recent attempts to save the species category. On the practical side, Darwin’s answer frees us from the search for the correct theoretical definition of “species”. But at the same time it does not require that we banish the word “species” from biology as some recent sceptics of the species category advocate. © The Willi Hennig Society 2010.  相似文献   

17.
During his historic Galápagos visit in 1835, Darwin spent nine days making scientific observations and collecting specimens on Santiago (James Island). In the course of this visit, Darwin ascended twice to the Santiago highlands. There, near springs located close to the island’s summit, he conducted his most detailed observations of Galápagos tortoises. The precise location of these springs, which has not previously been established, is here identified using Darwin’s own writings, satellite maps, and GPS technology. Photographic evidence from excursions to the areas where Darwin climbed, including repeat photography over a period of four decades, offers striking evidence of the deleterious impact of feral mammals introduced after Darwin’s visit. Exploring the impact that Darwin’s Santiago visit had on his thinking – especially focusing on his activities in the highlands – raises intriguing questions about the depth of his understanding of the evolutionary evidence he encountered while in the Galápagos. These questions and related insights provide further evidence concerning the timing of Darwin’s conversion to the theory of evolution, which, despite recent claims to the contrary, occurred only after his return to England.  相似文献   

18.
Sergei Winogradsky, was born in Russia in 1856 and was to become a founder of modern microbiology. After his Master's degree work on the nutrition and growth physiology of the yeast Mycoderma vini at the University of St. Petersburg, he joined the laboratory of Anton DeBary in Strassburg. There he carried out his studies on the sulfur-oxidizing bacterium Beggiatoa which resulted in his formulation of the theory of chemolithotrophy. He then joined the Swiss Polytechnic Institute in Zurich where he did his monumental work on bacterial nitrification. He isolated the first pure cultures of the nitrifying bacteria and confirmed that they carried out the separate steps of the conversion of ammonia to nitrite and of nitrite to nitrate. This led directly to the concept of the cycles of sulfur and nitrogen in Nature. He returned to Russia and there was the first to isolate a free-living dinitrogen-fixing bacterium. In the flush of success, he retired from science and spent 15?years on his familial estate in the Ukraine. The Russian revolution forced him to flee Russia. He joined the Pasteur Institute in Paris where he spent his remaining 24?years initiating and developing the field of microbial ecology. He died in 1953.  相似文献   

19.
The concept of chordates arose from the alliance between embryology and evolution in the second half of the nineteenth century, as a result of a theoretical elaboration on Kowalevsky’s discoveries about some fundamental similarities between the ontogeny of the lancelet, a putative primitive fish, and that of ascidians, then classified as molluscs. Carrying out his embryological studies in the light of Darwin’s theory and von Baer’s account of the germ layers, Kowalevsky was influenced by the German tradition of idealistic morphology that was concerned with transformations driven by laws of form, rather than with a gradual evolution occurring by means of variation, selection and adaptation. In agreement with this tradition, Kowalevsky interpreted the vertebrate-like structures of the ascidian larva according to von Kölliker’s model of heterogeneous generation. Then, he asserted the homology of the germ layers and their derivatives in different types of animals and suggested a common descent of annelids and vertebrates, in agreement with Saint-Hilaire’s hypothesis of the unity of composition of body plans, but in contrast with Haeckel’s idea of the Chordonia (chordates). In The Descent of Man Darwin quoted Kowalevsky’s discoveries, but accepted Haeckel’s interpretation of the ascidian embryology within the frame of a monophyletic tree of life that was produced by the fundamental biogenetic law. Joining embryology to evolution in the light of idealistic morphology, the biogenetic law turned out to be instrumental in bringing forth different evolutionary hypotheses: it was used by Haeckel and Darwin to link vertebrates to invertebrates by means of the concept of chordates, and by Kowalevsky to corroborate the annelid theory of the origin of vertebrates. Yet, there was still another interpretation of Kowalevsky’s discoveries. As an adherent to empiricism and to Cuvier’s theory of types, von Baer asserted that these discoveries did not prove convincingly a dorsal position of the nervous system in the ascidian tadpole larva; hence, they could not support a homology between different animal types suggesting a kinship between ascidians and vertebrates.  相似文献   

20.
Darwin maintained that the principles of natural selection and divergence were the “keystones” of his theory. He introduced the principle of divergence to explain a fundamental feature of living nature: that organisms cluster into hierarchical groups, so as to be classifiable in the Linnaean taxonomic categories of variety, species, genus, and so on. Darwin’s formulation of the principle of divergence, however, induces many perplexities. In his Autobiography, he claimed that he had neglected the problem of divergence in his Essay of 1844 and only solved it in a flash during a carriage ride in the 1850s; yet he does seem to have stated the problem in the Essay and provided the solution. This initial conundrum sets three questions I wish to pursue in this essay: (1) What is the relationship of the principle of divergence to that of natural selection? Is it independent of selection, derivative of selection, or a type of selection, perhaps comparable to sexual selection? (2) What is the advantage of divergence that the principle implies—that is, why is increased divergence beneficial in the struggle for life? And (3) What led Darwin to believe he had discovered the principle only in the 1850s? The resolution of these questions has implications for Darwin’s other principle, natural selection, and permits us to readjust the common judgment made about Jerry Fodor’s screed against that latter principle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号