首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Harmful algal blooms that disrupt and degrade ecosystems (ecosystem disruptive algal blooms, EDABs) are occurring with greater frequency and severity with eutrophication and other adverse anthropogenic alterations of coastal systems. EDAB events have been hypothesized to be caused by positive feedback interactions involving differential growth of competing algal species, low grazing mortality rates on EDAB species, and resulting decreases in nutrient inputs from grazer-mediated nutrient cycling as the EDAB event progresses. Here we develop a stoichiometric nutrient–phytoplankton–zooplankton (NPZ) model to test a conceptual positive feedback mechanism linked to increased cell toxicity and resultant decreases in grazing mortality rates in EDAB species under nutrient limitation of growth rate. As our model EDAB alga, we chose the slow-growing, toxic dinoflagellate Karenia brevis, whose toxin levels have been shown to increase with nutrient (nitrogen) limitation of specific growth rate. This species was competed with two high-nutrient adapted, faster-growing diatoms (Thalassiosira pseudonana and Thalassiosira weissflogii) using recently published data for relationships among nutrient (ammonium) concentration, carbon normalized ammonium uptake rates, cellular nitrogen:carbon (N:C) ratios, and specific growth rate. The model results support the proposed positive feedback mechanism for EDAB formation and toxicity. In all cases the toxic bloom was preceded by one or more pre-blooms of fast-growing diatoms, which drew dissolved nutrients to low growth rate-limiting levels, and stimulated the population growth of zooplankton grazers. Low specific grazing rates on the toxic, nutrient-limited EDAB species then promoted the population growth of this species, which further decreased grazing rates, grazing-linked nutrient recycling, nutrient concentrations, and algal specific growth rates. The nutrient limitation of growth rate further increased toxin concentrations in the EDAB algae, which further decreased grazing-linked nutrient recycling rates and nutrient concentrations, and caused an even greater nutrient limitation of growth rate and even higher toxin levels in the EDAB algae. This chain of interactions represented a positive feedback that resulted in the formation of a high-biomass toxic bloom, with low, nutrient-limited specific growth rates and associated high cellular C:N and toxin:C ratios. Together the elevated C:N and toxin:C ratios in the EDAB algae resulted in very high bloom toxicity. The positive feedbacks and resulting bloom formation and toxicity were increased by long water residence times, which increased the relative importance of grazing-linked nutrient recycling to the overall supply of limiting nutrient (N).  相似文献   

2.
We compared the results of phosphorus-enrichment bioassay experiments with alkaline phosphatase activity (APA) assays as indicators of phosphorus (P) limitation of in situ phytoplankton growth. In 4-d experiments, phytoplankton APA decreased or remained unchanged in P-enriched samples, but increased in unenriched samples, indicating a rapid alteration of the P status of the unenriched algae during the experimental incubations. In direct comparisons of enrichment bioassays and APA assays of reservoir phytoplankton samples, the results of the two methods corresponded in general, although contradictory results were not uncommon. Our data support the conclusion that enrichment experiments can indicate the potential for nutrient limitation of algal growth in the absence of other limiting factors, but do not necessarily demonstrate the occurrence of in situ nutrient limitation of phytoplankton production.  相似文献   

3.
Summary Nutrient concentrations and phytoplankton species composition in near surface samples were studied along a S-N gradient in the Drake Passage, in early December 1984. Nitrate concentrations were much lower than usually previously reported from circum-Antarctic waters. Comparison of dissolved nutrient concentrations with growth requirements of Antarctic plankton algae suggests potential limitation of at least some species by nitrate or silicate. The taxonomic composition of the phytoplankton in our samples seemed to be partially controlled by competition for limiting nutrients.  相似文献   

4.
5.
浮游植物的化感作用   总被引:7,自引:0,他引:7  
生物化感作用研究是近年来兴起的交叉学科,是化学生态学研究的重要领域。研究水域浮游植物化感作用对了解浮游植物之间、浮游植物与其他生物之间的相互作用及作用机理具有重要意义,对了解赤潮和水华的发生机制及其生态控制等具有非常重要的作用。综述了海洋和湖泊浮游植物化感作用和化感物质的内涵,讨论了水体浮游植物化感作用的特点、研究化感作用的基本方法、化感物质的种类以及影响化感物质作用的生物和非生物因素,详细介绍了浮游植物化感物质的作用机理以及逃避和拈抗化感作用的方式,同时对目前研究的热点问题及未来研究的方向做了简要概述。  相似文献   

6.
Inhibition of phytoplankton by allelochemicals released by submerged macrophytes is supposed to be one of the mechanisms that contribute to the stabilisation of clear-water states in shallow lakes. The relevance of this process at ecosystem level, however, is debated because in situ evidence is difficult to achieve. Our literature review indicates that allelopathically active species such as Myriophyllum, Ceratophyllum, Elodea and Najas or certain charophytes are among the most frequent submerged macrophytes in temperate shallow lakes. The most common experimental approach for allelopathic interference between macrophytes and phytoplankton has been the use of plant extracts or purified plant compounds. Final evidence, however, requires combination with more realistic in situ experiments. Such investigations have successfully been performed with selected species. In situ allelopathic activity is also influenced by the fact that phytoplankton species exhibit differential sensitivity against allelochemicals both between and within major taxonomic groups such as diatoms, cyanobacteria and chlorophytes. In general, epiphytic species apparently are less sensitive towards allelochemicals than phytoplankton despite living closely attached to the plants and being of key importance for macrophyte growth due to their shading. Light and nutrient availability potentially influence the sensitivity of target algae and cyanobacteria. Whether or not additional stressors such as nutrient limitation enhance or dampen allelopathic interactions still has to be clarified. We strongly propose allelopathy as an important mechanism in the interaction between submerged macrophytes and phytoplankton in shallow lakes based on the frequent occurrence of active species and the knowledge of potential target species. The role of allelopathy interfering with epiphyton development is less well understood. Including further levels of complexity, such as nutrient interference, grazing and climate, will extend this ecosystem-based view of in situ allelopathy.  相似文献   

7.
Nutrient limitation of periphyton and phytoplankton was assessed in the Upper Guadalupe River, Texas USA. Nutrient-diffusing substrates with added nitrogen (N) and phosphorus (P) were used to identify the limiting nutrient for lotic algae at three river sites in summer, fall, and winter. Pots enriched with P had significantly higher chlorophyll a concentrations for 7 of 9 trials. Added N alone did not significantly increase algal standing crops, although it was found to be secondarily limiting on one (and possibly two) occasions. Flow-through enrichment experiments were conducted in order to quantify the concentration of P needed to significantly increase algal standing crops. Response to enrichment was rapid when ambient P concentration was low (< 0.010 mg L–1), but more moderate when ambient P levels were higher (0.015–0.025 mg L–1). Nutrient limitation of phytoplankton in small surface-release reservoirs varied throughout the study, but N was either primarily or secondarily limiting in 6 of 8 trials; shifts in the limiting nutrient were correlated with fluctuations in flow into the reservoirs. Our enrichment studies show that algal response to nutrient addition was unpredictable as phytoplankton tended to be N-limited while periphyton was mainly P-limited. Further, while discharge apparently dictated the nutrient-biomass relationship for phytoplankton in reservoirs, ambient nutrient level is an important determinant of lotic periphyton response to enrichment.  相似文献   

8.
The allelopathic activity of the aquatic macrophyte, Stratiotes aloides, was determined with laboratory experiments. Active compounds exuded in the medium or present in plant tissue were extracted using standard procedures and solid phase extraction (SPE). The activity towards various cyanobacteria and chlorophytes was tested in two different bioassay systems using agar plates and liquid cultures of phytoplankton. Extracts and exudates of S. aloides affected phytoplankton growth. SPE-enriched exudates and enriched water from a natural Stratiotes stand caused inhibition of target species, however, also some controls were active. Phytoplankton species exhibited differential sensitivity to extracts of S. aloides. We observed inhibitory and stimulatory effects on phytoplankton. In general, more cyanobacteria than other phytoplankton species were inhibited, and the inhibition of cyanobacteria was stronger. In most cases, nutrient (P or K) limitation of Synechococcus elongatus and Scenedesmus obliquus decreased the sensitivity of these species towards allelochemicals from Stratiotes aloides, except for P-limited cultures of Scenedesmus. The allelopathically active compound(s) from Stratiotes are moderately lipophilic and most likely no phenolic compounds. Our results indicate that allelopathy (besides nutrient interference and shading) might also account for the low phytoplankton and filamentous algae densities in the vicinity of Stratiotes plants, at least during certain phases of the life-cycle of Stratiotes.  相似文献   

9.
1. Filamentous green algae (FGA) may represent an alternative state in high‐nutrient shallow temperate lakes. Furthermore, a clear water state is sometimes associated with the dominance of FGA; however, the mechanisms involved remain uncertain. 2. We hypothesised that FGA may promote a clear water state by directly suppressing phytoplankton growth, mostly via the release of allelochemicals, and that this interaction may be affected by temperature. 3. We examined the relationships between FGA, phytoplanktonic chlorophyll a concentrations and zooplankton in a series of mesocosms (2.8 m3) mimicking enriched shallow ponds now and in a future warmer climate (0 and c. 5 °C above ambient temperatures). We then tested the potential allelopathic effects of FGA (Cladophora sp. and Spirogyra sp.) on phytoplankton using several short‐term microcosms and laboratory experiments. 4. Mesocosms with FGA evidenced lower phytoplanktonic chlorophyll a concentrations than those without. Zooplankton and zooplankton : phytoplankton biomass ratios did not differ between mesocosms with and without FGA, suggesting that grazing was not responsible for the negative effects on phytoplanktonic biomass (chlorophyll a). 5. Our field microcosm experiments demonstrated that FGA strongly suppressed the growth of natural phytoplankton at non‐limiting nutrient conditions and regardless of phytoplankton initial concentrations or micronutrients addition. Furthermore, we found that the negative effect of FGA on phytoplankton growth increased up to 49% under high incubation temperatures. The experiment performed using FGA filtrates confirmed that the inhibitory effect of FGA on phytoplankton may be attributed to allelochemicals. 6. Our results suggest that FGA control of phytoplankton growth may be an important mechanism for stabilising clear water in shallow temperate lakes dominated by FGA and that FGA may play a larger role when lakes get warmer.  相似文献   

10.
Promotion of harmful algal blooms by zooplankton predatory activity   总被引:1,自引:0,他引:1  
Mitra A  Flynn KJ 《Biology letters》2006,2(2):194-197
The relationship between algae and their zooplanktonic predators typically involves consumption of nutrients by algae, grazing of the algae by zooplankton which in turn enhances predator biomass, controls algal growth and regenerates nutrients. Eutrophication raises nutrient levels, but does not simply increase normal predator-prey activity; rather, harmful algal bloom (HAB) events develop often with serious ecological and aesthetic implications. Generally, HAB species are outwardly poor competitors for nutrients, while their development of grazing deterrents during nutrient stress ostensibly occurs too late, after the nutrients have largely been consumed already by fast-growing non-HAB species. A new mechanism is presented to explain HAB dynamics under these circumstances. Using a multi-nutrient predator-prey model, it is demonstrated that these blooms can develop through the self-propagating failure of normal predator-prey activity, resulting in the transfer of nutrients into HAB growth at the expense of competing algal species. Rate limitation of this transfer provides a continual level of nutrient stress that results in HAB species exhibiting grazing deterrents protecting them from top-down control. This process is self-stabilizing as long as nutrient demand exceeds supply, maintaining the unpalatable status of HABs; such events are most likely under eutrophic conditions with skewed nutrient ratios.  相似文献   

11.
The importance of different factors involved in the limitation of primary production in oligotrophic Mediterranean waters were investigated, through both nutrient and production estimations and algal bioassays. All the results obtained show that phosphorus is the main limiting factor of algal production. Nitrogen and chelating substances appear to be less limiting and vitamins play a small role. Light and temperature were not limiting, but higher temperatures were responsible for increased physiological activities of the phytoplankton. Previous results from the literature and those reported allow the authors to conclude that, as far as primary production is concerned, the northwestern part of the Mediterranean Sea differs from the large oceans.  相似文献   

12.
Increases in population and agriculture in coastal areas can result in increased nutrient inputs and alterations in the ratios of organic to inorganic nutrients in coastal waters. Such changes in coastal nutrient regimes can affect phytoplankton community structure by creating conditions favorable for growth and dominance of algae that were not dominant before. The effect that changes in ratios and concentrations of nutrients have on toxicity of harmful algal species is not well known. There seems to be a relationship; however, between nutrient stress and toxin production among harmful phytoplankton producing low-N toxins, e.g. Diarrhetic Shellfish Poisoning (DSP) toxins. Even less is known about the relationship between organic nutrient uptake and toxin production. Benthic species and species in coastal areas are probably exposed to greater fluxes of dissolved organic nitrogen (DON). In this study, benthic and planktonic species of Prorocentrum were grown on L1 media with the sole N-source varying among treatments as nitrate, ammonium, urea, L-glutamic acid, and high molecular weight natural DON. An ELISA specific to the DSP toxins, okadaic acid and 35-methylokadaic acid, was used to determine toxin production by each species when grown on the different N sources. Preliminary results indicate that some organic forms of N support growth as well as inorganic forms for Prorocentrum minimum , P. mexicanum , and P. hoffmannianum.  相似文献   

13.
沉水植物化感作用控藻能力评述   总被引:21,自引:0,他引:21  
沉水植物所释放的化学物质对藻类的抑制作用是浅水湖泊维持清水状态的机制之一.本文从具有化感活性的沉水植物在湖泊中出现的频度、盖度、化感物质的种类、抑藻效应等方面对化感控藻进行了评述.已有研究结果表明:穗花狐尾藻、金鱼藻、伊乐藻等是具有很高活性的沉水植物,尤其是在其生物量达到一定程度,且湖泊中的优势藻为较敏感的种类时,沉水植物分泌的化感物质对浮游藻类的抑制作用更强;沉水植物释放的多酚类等化感物质具有控藻能力;化感物质对于不同种类藻的抑制作用具有选择性,蓝藻和硅藻比绿藻更为敏感,附生藻类通常比浮游藻类具有更高的耐受性;环境因素如光照、营养限制、温度等会显著影响沉水植物化感作用效果.沉水植物的化感控藻研究尚处于初始阶段,关于环境因素对化感作用的影响、化感物质的分离鉴定、选择性抑藻机理以及化感物质代谢途径等方面还有待深入、全面的研究.  相似文献   

14.
The aim of this research was to examine nutrient limitation of phytoplankton in solar salt ponds of varying salinity at Useless Inlet in Western Australia. These ponds use solar energy to evaporate seawater for the purpose of commercial salt production. A combination of techniques involving water column nutrient ratios, comparisons of nutrient concentrations to concentration of magnesium ions and bioassays were used in the investigation. Comparisons of changes in dissolved inorganic nitrogen to phosphorus ratios and concentrations of dissolved inorganic nutrients against changes in concentrations of the conservative cation Mg2+ indicated that phytoplankton biomass was potentially nitrogen limited along the entire pond salinity gradient. Nutrient addition bioassays indicated that in low salinity ponds, phytoplankton was nitrogen limited but in high salinity ponds, phosphorus limited. This may be due to isolation of phytoplankton in bioassay bottles from in situ conditions as well as to changes in phytoplankton species composition between ponds, and the variable availability of inorganic and organic nutrient sources. The differences in limiting nutrient between methods indicate that phytoplankton cells may be proximally limited by nutrients that are not theoretically limiting at the pond scale. Dissolved organic nutrients constituted a large proportion of total nutrients, with concentrations increasing through the pond sequence of increasing salinity. From the change in nutrient concentrations in bioassay bottles, sufficient dissolved organic nitrogen may be available for phytoplankton uptake in low salinity ponds, potentially alleviating the dissolved inorganic nitrogen limitation of phytoplankton biomass. Guest Editors: J. John & B. Timms Salt Lake Research: Biodiversity and Conservation—Selected Papers from the 9th Conference of the International Society for Salt Lake Research  相似文献   

15.
This paper gives an overview of interactions betweenbivalve grazing and ecosystem processes, that mayaffect the carrying capacity of ecosystems for bivalvesuspension feeders. These interactions consist of anumber of positive and negative feedbacks.Bivalve grazing can result in local food depletion,which may negatively influence bivalve growth. On alarger scale, it may induce a top-down control ofphytoplankton biomasss, and structural shifts inphytoplankton composition. In the case of harmfulalgal blooms, phytoplankton may negatively affectbivalve grazing rates.The processing of large amounts of particulate mattermay change nutrient cycling on the scale of estuaries,and can result in changes in the inorganic nutrientpool available for phytoplankton, through regenerationand reduced storage of nutrients in algal biomass.This can reduce nutrient limitation of thephytoplankton and stimulate algal growth rates.Observations from mesocosm studies suggest that apositive feedback from bivalve grazing onphytoplankton growth may also change the physiologicalstate of the algae and improve food quality. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
高宇  林光辉 《生物多样性》2018,26(11):1223-137
藻类是红树林生态系统重要的生物类群, 根据生态习性可分为浮游植物、底栖微藻和大型藻类三个生态类群, 它们在红树林生态系统生物多样性、初级生产、元素循环等方面起着重要作用。但在红树林生态系统中, 关注重点多集中在红树植物和动物, 对其中的藻类重视不够, 且多数研究集中在近20年以及亚洲的红树林区。事实上, 红树林生态系统藻类非常丰富, 其多样性研究有助于深入揭示红树林生态系统的结构与功能。本文介绍了红树林生态系统藻类的组成类群及其重要性, 重点对红树林区浮游植物、底栖硅藻和大型海藻的种类组成、地理分布及其与初级生产力、水质污染、元素循环、碳库形成等生态过程中的作用的研究动态和进展等进行了总结。根据已有研究, 红树林区浮游植物和底栖硅藻的种类数一般为几十到上百种, 其中硅藻在种类和数量上都占绝对优势, 它们是重要的初级生产者、饵料生物和水质污染指示生物; 红树林区底栖大型藻类主要由红藻、绿藻、褐藻、蓝藻组成, 绿藻的种类较多, 红藻在数量上占优势; 藻类是红树林湿地碳库的重要贡献者, 在红树林湿地生态系统碳汇和碳循环中起重要作用。红树林生态系统是个高度动态和异质的系统, 今后应加强红树林藻类多样性的长周期、大尺度变化及不同生境藻类的综合研究, 关注大陆径流和潮汐对藻类多样性和蓝碳的影响, 借助沉积物藻类记录, 探明红树林区藻类的长周期变化, 反演气候变化和人类活动对红树林生态系统的影响过程和机制。  相似文献   

17.
Increases in population and agriculture in coastal areas can result in increased nutrient inputs and alterations in the ratios of organic to inorganic nutrients in coastal waters. Such changes in coastal nutrient regimes can affect phytoplankton community structure by creating conditions favorable for growth and dominance of algae that were not dominant before. The effect that changes in ratios and concentrations of nutrients have on toxicity of harmful algal species is not well known. There seems to be a relationship; however, between nutrient stress and toxin production among harmful phytoplankton producing low‐N toxins, e.g. Diarrhetic Shellfish Poisoning (DSP) toxins. Even less is known about the relationship between organic nutrient uptake and toxin production. Benthic species and species in coastal areas are probably exposed to greater fluxes of dissolved organic nitrogen (DON). In this study, benthic and planktonic species of Prorocentrum were grown on L1 media with the sole N‐source varying among treatments as nitrate, ammonium, urea, L‐glutamic acid, and high molecular weight natural DON. An ELISA specific to the DSP toxins, okadaic acid and 35‐methylokadaic acid, was used to determine toxin production by each species when grown on the different N sources. Preliminary results indicate that some organic forms of N support growth as well as inorganic forms for Prorocentrum minimum, P. mexicanum, and P. hoffmannianum.  相似文献   

18.
19.
沿岸海域富营养化与赤潮发生的关系   总被引:10,自引:0,他引:10  
徐宁  段舜山  李爱芬  刘振乾 《生态学报》2005,25(7):1782-1787
综述了赤潮的发生与沿岸海域富营养化的关系。近几十年来,人类活动使得天然水体的富营养化进程大大加速。营养负荷的增加与高生物量水华的增多相联系。控制营养输入后,浮游植物生物量或有害藻类水华事件也相应减少。营养的组成与浮游植物的种类组成及水华的形成有密切联系。有机营养对有害藻类水华的促进作用受到关注。营养输入时机影响浮游植物种间竞争的结果,因而对浮游植物的群落演替具有深远影响。由于浮游植物存在生理差异,因而对营养加富的反应因种而异。营养在调控某些有毒藻类的毒素产量方面也发挥着重要作用。此外,营养输入与藻类水华之间存在复杂的间接联系。当然,营养状况并非浮游植物群落演替的唯一决定因素。研究结果提示,控制营养输入、减缓水域富营养化是减少有害藻类水华发生的有效途径,而深入研究典型有害藻类的营养生理对策则为防治并最终消除有害藻类水华提供了理论基础。  相似文献   

20.
1. The relative importance of zooplankton grazing and nutrient limitation in regulating the phytoplankton community in the non-stratified Lake Kvie, Denmark, were measured nine times during the growing season.
2. Natural phytoplankton assemblage bioassays showed increasing importance of nutrient limitation during summer. Growth rates at ambient nutrient concentrations were continually below 0.12 per day, while co-enrichment with nitrogen (N) and phosphorus (P) to above concentration-saturated conditions enhanced growth rates from May to the end of July.
3. Stoichiometric ratios of important elements in seston (C : N, C : P, N : P), in lake water (TN : TP), in external loading (TN : TP) and in internal loading (DIN : DIP) were measured to determine whether N or P could be the limiting nutrient. TN : TP molar ratio of both lake water, benthic fluxes and external loading suggested P limitation throughout the growing season. However, seston molar ratios suggested moderate P-deficiency only during mid-summer.
4. Abundance and community structure of the zooplankton varied considerably through the season and proved to be important in determining the responses of algal assemblages to grazing. High abundance of cladocerans and rotifers resulted in significant grazing impact, while cyclopoid copepods had no significant effect on the phytoplankton biomass.
5. Regeneration of ammonium and phosphate by zooplankton were periodically important for phytoplankton growth. A comparison of nutrient regeneration by zooplankton with nutrient inputs from sediment and external sources indicated that zooplankton may contribute significantly in supplying N and P for the growth of phytoplankton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号