首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

In the past decades, the prevalence of candidemia has increased significantly and drug resistance has also become a pressing problem. Overexpression of CDR1, an efflux pump, has been proposed as a major mechanism contributing to the drug resistance in Candida albicans. It has been demonstrated that biological fluids such as human serum can have profound effects on antifungal pharmacodynamics. The aim of this study is to understand the effects of serum in drug susceptibility via monitoring the activity of CDR1 promoter of C. albicans.  相似文献   

2.
Most screening approaches produce compounds that target survival genes and are likely to generate resistance over time. Simply having more drugs does not address the potential emergence of resistance caused by target mutation, drug efflux pumps over-expression, and so on. There is a great need to explore new strategies to treat fungal infections caused by drug-resistant pathogens. In this study, we found that azole-resistant Candida albicans with CaCDR1 and CaCDR2 over-expression is hypersensitive against amphotericin B (AmB) by our high throughput synergy screening (HTSS). In contrast, Δcdr1 and Δcdr2 knockout strains were resistant to AmB. Moreover, clinical isolates with increased expression of CaCDR1 and CaCDR2 demonstrated susceptibility to AmB, which can also synergize with the efflux pumps inducer fluphenazine (FPZ). Finally, the increased drug susceptibility to AmB in azole-resistant C. albicans with drug efflux pumps over-expression was consistent with the elevated expression of CaERG11 and its associated ergosterols in clinical isolates. Our data implies that the level of ergosterol contents determines the susceptibility to azoles and AmB in C. albicans. Deep understanding of the above mechanisms would offer new hope to treat drug-resistant C. albicans.  相似文献   

3.
Resistance of the pathogenic yeast Candida albicans to the antifungal agent fluconazole is often caused by the overexpression of genes that encode multidrug efflux pumps (CDR1, CDR2, or MDR1). We have undertaken a proteomic approach to gain further insight into the regulatory network controlling efflux pump expression and drug resistance in C. albicans. Three pairs of matched fluconazole-susceptible and resistant clinical C. albicans isolates, in which drug resistance correlated with stable activation of MDR1 or CDR1/2, were analyzed for differences in their protein expression profiles. In two independent, MDR1-overexpressing, strains, additional up-regulated proteins were identified, which are encoded by the YPR127 gene and several members of the IFD (YPL088) gene family. All are putative aldo-keto reductases of unknown function. These proteins were not up-regulated in a fluconazole-resistant strain that overexpressed CDR1 and CDR2 but not MDR1, indicating that expression of the various efflux pumps of C. albicans is controlled by different regulatory networks. To investigate the possible role of YPR127 in the resistance phenotype of the clinical isolates, we constitutively overexpressed the gene in a C. albicans laboratory strain. In addition, the gene was deleted in a C. albicans laboratory strain and in one of the drug-resistant clinical isolates in which it was overexpressed. Neither forced overexpression nor deletion of YPR127 affected the susceptibility of the strains to drugs and other toxic substances, suggesting that the regulatory networks which control the expression of efflux pumps in C. albicans also control genes involved in cellular functions not related to drug resistance.Communicated by D. Y. Thomas  相似文献   

4.
5.
6.
7.
One-third of all individuals with epilepsy are resistant to antiepileptic drug (AED) treatment. Antiepileptic treatment response has been suggested to be modulated by genetic polymorphisms of drug efflux transporters. Several polymorphic variants within the multidrug resistance 1 (MDR1) gene, which encodes the major transmembrane efflux transporter P-glycoprotein, have been proposed to be associated with AED resistance in epilepsy patients. The aim of this study was to evaluate the effect of C3435T and G2677T/A polymorphisms of MDR1 on AED resistance in Turkish children with epilepsy. MDR1 C3435T and G2677T/A were genotyped in 152 patients with epilepsy, classified as drug-resistant in 69 and drug-responsive in 83. Genotypes of the C3435T and G2677T/A polymorphisms were determined by polymerase chain reaction followed by restriction fragment length polymorphism. Genotype and allele frequencies of C3435T and G2677T/A polymorphisms of the MDR1 gene did not differ between drug-resistant and drug-responsive epilepsy patients. Our results suggest that MDR1 C3435T and G2677T/A polymorphisms are not associated with AED resistance in Turkish epileptic patients. To clarify the exact clinical implication of the MDR1 polymorphisms on the multidrug resistance in epilepsy, further investigations in various ethnic populations would be necessary.  相似文献   

8.
Widespread and repeated use of azoles, particularly fluconazole, has led to the rapid development of azole resistance in Candida albicans. Overexpression of CDR1, CDR2, and CaMDR1 has been reported contributing to azole resistance in C. albicans. In this study, hyper-resistant C. albicans mutant, with the above three genes deleted, was obtained by exposure to fluconazole and fluphenezine for 28 passages. Thirty-five differentially expressed genes were identified in the hyper-resistant mutant by microarray analysis; among the 13 up-regulated genes, we successfully constructed the rta2 and ipf14030 null mutants in C. albicans strain with deletions of CDR1, CDR2 and CaMDR1. Using spot dilution assay, we demonstrated that the disruption of RTA2 increased the susceptibility of C. albicans to azoles while the disruption of IPF14030 did not influence the sensitivity of C. albicans to azoles. Meanwhile, we found that ectopic overexpression of RTA2 in C. albicans strain with deletions of CDR1, CDR2 and CaMDR1 conferred resistance to azoles. RTA2 expression was found elevated in clinical azole-resistant isolates of C. albicans. In conclusion, our findings suggest that RTA2 is involved in the development of azole resistance in C. albicans.  相似文献   

9.
10.
11.
12.
13.
Overexpression of the Candida albicans ATP‐binding cassette transporter CaCdr1p causes clinically significant resistance to azole drugs including fluconazole (FLC). Screening of a ~ 1.89 × 106 member d ‐octapeptide combinatorial library that concentrates library members at the yeast cell surface identified RC21v3, a 4‐methoxy‐2,3,6‐trimethylbenzenesulphonyl derivative of the d ‐octapeptide d ‐NH2‐FFKWQRRR‐CONH2, as a potent and stereospecific inhibitor of CaCdr1p. RC21v3 chemosensitized Saccharomyces cerevisiae strains overexpressing CaCdr1p but not other fungal ABC transporters, the C. albicans MFS transporter CaMdr1p or the azole target enzyme CaErg11p, to FLC. RC21v3 also chemosensitized clinical C. albicans isolates overexpressing CaCDR1 to FLC, even when CaCDR2 was overexpressed. Specific targeting of CaCdr1p by RC21v3 was confirmed by spontaneous RC21v3 chemosensitization‐resistant suppressor mutants of S. cerevisiae expressing CaCdr1p. The suppressor mutations introduced a positive charge beside, or within, extracellular loops 1, 3, 4 and 6 of CaCdr1p or an aromatic residue near the extracytoplasmic end of transmembrane segment 5. The mutations did not affect CaCdr1p localization or CaCdr1p ATPase activity but some increased susceptibility to the CaCdr1p substrates FLC, rhodamine 6G, rhodamine 123 and cycloheximide. The suppressor mutations showed that the drug‐like CaCdr1p inhibitors FK506, enniatin, milbemycin α11 and milbemycin β9 have modes of action similar to RC21v3.  相似文献   

14.
15.
Candida albicans is usually a harmless human commensal. Because inflammatory responses are not normally induced by colonization, antimicrobial peptides are likely integral to first-line host defense against invasive candidiasis. Thus, C. albicans must have mechanisms to tolerate or circumvent molecular effectors of innate immunity and thereby colonize human tissues. Prior studies demonstrated that an antimicrobial peptide-resistant strain of C. albicans, 36082R, is hypervirulent in animal models versus its susceptible counterpart (36082S). The current study aimed to identify a genetic basis for antimicrobial peptide resistance in C. albicans. Screening of a C. albicans genomic library identified SSD1 as capable of conferring peptide resistance to a susceptible surrogate, Saccharomyces cerevisiae. Sequencing confirmed that the predicted translation products of 36082S and 36082R SSD1 genes were identical. However, Northern analyses corroborated that SSD1 is expressed at higher levels in 36082R than in 36082S. In isogenic backgrounds, ssd1Δ/ssd1Δ null mutants were significantly more susceptible to antimicrobial peptides than parental strains but had equivalent susceptibilities to nonpeptide stressors. Moreover, SSD1 complementation of ssd1Δ/ssd1Δ mutants restored parental antimicrobial peptide resistance phenotypes, and overexpression of SSD1 conferred enhanced peptide resistance. Consistent with these in vitro findings, ssd1 null mutants were significantly less virulent in a murine model of disseminated candidiasis than were their parental or complemented strains. Collectively, these results indicate that SSD1 is integral to C. albicans resistance to host defense peptides, a phenotype that appears to enhance the virulence of this organism in vivo.  相似文献   

16.
17.
18.

Background

Hyphal growth and multidrug resistance of C. albicans are important features for virulence and antifungal therapy of this pathogenic fungus.

Methodology/Principal Findings

Here we show by phenotypic complementation analysis that the C. albicans gene AGE3 is the functional ortholog of the yeast ARF-GAP-encoding gene GCS1. The finding that the gene is required for efficient endocytosis points to an important functional role of Age3p in endosomal compartments. Most C. albicans age3Δ mutant cells which grew as cell clusters under yeast growth conditions showed defects in filamentation under different hyphal growth conditions and were almost completely disabled for invasive filamentous growth. Under hyphal growth conditions only a fraction of age3Δ cells shows a wild-type-like polarization pattern of the actin cytoskeleton and lipid rafts. Moreover, age3Δ cells were highly susceptible to several unrelated toxic compounds including antifungal azole drugs. Irrespective of the AGE3 genotype, C-terminal fusions of GFP to the drug efflux pumps Cdr1p and Mdr1p were predominantly localized in the plasma membrane. Moreover, the plasma membranes of wild-type and age3Δ mutant cells contained similar amounts of Cdr1p, Cdr2p and Mdr1p.

Conclusions/Significance

The results indicate that the defect in sustaining filament elongation is probably caused by the failure of age3Δ cells to polarize the actin cytoskeleton and possibly of inefficient endocytosis. The high susceptibility of age3Δ cells to azoles is not caused by inefficient transport of efflux pumps to the cell membrane. A possible role of a vacuolar defect of age3Δ cells in drug susceptibility is proposed and discussed. In conclusion, our study shows that the ARF-GAP Age3p is required for hyphal growth which is an important virulence factor of C. albicans and essential for detoxification of azole drugs which are routinely used for antifungal therapy. Thus, it represents a promising antifungal drug target.  相似文献   

19.
This study examined the effects of microtubule-targeting anticancer drugs (paclitaxel, cabazitaxel, and eribulin) on the expression of drug efflux transporter P-glycoprotein, which is encoded by MDR1. Paclitaxel and eribulin induced MDR1 promoter activity in a concentration-dependent manner, while cabazitaxel had little effect in human intestinal epithelial LS174T cells. Overexpression of the nuclear receptor pregnane X receptor (PXR) gene (NR1I2) enhanced paclitaxel- and eribulin-induced MDR1 activation, but expression of the nuclear receptor co-repressor silencing mediator for retinoid and thyroid receptors (SMRT) gene (NCOR2) repressed MDR1 activation. Eribulin increased the mRNA and protein expression of P-glycoprotein in LS174T cells. Cellular uptake of rhodamine 123 and calcein-acetoxymethyl ester (calcein-AM), P-glycoprotein substrates, decreased in paclitaxel- or eribulin-treated LS174T cells. Eribulin also increased MDR1 promoter activity in human breast cancer MCF7 cells. The results suggest that the microtubule-targeting anticancer drug eribulin can induce the drug efflux transporter P-glycoprotein via PXR in human intestinal and breast cancer cells and thus influence the efficacy of anticancer drugs.  相似文献   

20.
Candida albicans is a major fungal pathogen, accounting for approximately 15% of healthcare infections with associated mortality as high as 40% in the case of systemic candidiasis. Antifungal agents for C. albicans infections are limited, and rising resistance is an inevitable problem. Therefore, understanding the mechanism behind antifungal responses is among the top research focuses in combating Candida infections. Herein, the recently developed C. albicans haploid model is employed to examine the association between mitochondrial fission, regulated by Dnm1, and the pathogen's response to antifungals. Proteomic analysis of dnm1Δ and its wild‐type haploid parent, GZY803, reveal changes in proteins associated with mitochondrial structures and functions, cell wall, and plasma membrane. Antifungal susceptibility testing revealed that dnm1Δ is more susceptible to SM21, a novel antifungal, than GZY803. Analyses of reactive oxygen species release, antioxidant response, lipid peroxidation, and membrane damages uncover an association between dnm1Δ and the susceptibility to SM21. Dynasore‐induced mitochondrial inhibition in SC5314 diploids corroborate the findings. Interestingly, Dynasore‐primed SC5314 cultures exhibit increased susceptibility to all antifungals tested. These data suggest an important contribution of mitochondrial fission in antifungal susceptibility of C. albicans. Hence, mitochondrial fission can be a potential target for combined therapy in anti‐C. albicans treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号