首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Summary Four different types of crosses have been used to establish the order of the four genes in the qa gene cluster of Neurospora crassa, which encode the following proteins involved in the inducible catabolism of quinic acid: a regulatory (activator) protein (qa-1), catabolic dehydroquinase (qa-2), quinate dehydrogenase (qa-3), and dehydroshikimate dehydrase (qa-4). The four crosses involved (1) the ordering of the four qa genes relative to the closely-linked me-7 locus; (2) the ordering of the three other qa genes relative to a qa-1 S mutant; (3) the use of a three factor cross-qa-3xqa-4 qa-2 and (4) the use of four factor crosses-qa-1 S xqa-3 qa-4 qa-2. The results of all four types of crosses agree in establishing an apparently definitive proximal to distal order, within the right arm of linkage group VII, i.e., qa-1 qa-3 qa-4 qa-2 me-7.The significance of a definitive establisment of the gene order within the qa cluster for an understanding of the organization and mechanism of genetic regulation in this cluster is discussed.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
Molecular characterization of the qa-4 gene of Neurospora crassa   总被引:4,自引:0,他引:4  
B J Rutledge 《Gene》1984,32(3):275-287
  相似文献   

11.
12.
13.
Summary Theqa-2 gene ofNeurospora crassa encodes catabolic dehydroquinase which catabolizes dehydroquinic acid to dehydroshikimic acid. TheQUTE gene ofAspergillus nidulans corresponds to theqa-2 gene ofN. crassa. The plasmid pEH1 containing theQUTE gene fromA. nidulans was used to transform aqa-2 strain ofN. crassa. In Southern blot analyses, DNAs isolated from these transformants hybridized specifically to theQUTE gene probe. Northern blot analyses indicated thatQUTE mRNA was produced in the transformants. The functional integrity of theQUTE gene inN. crassa was indicated by transformants which had regained the ability to grow on quinic acid as sole carbon source. Enzyme assays indicated that the specific activities of catabolic dehydroquinase induced by quinic acid in the transformants ranged from 4% to 32% of that induced in wild-typeN. crassa. The evidence that theQUTE structural gene ofA. nidulans is inducible when introduced into theN. crassa genome implies that theN. crassa qa activator protein can recognize, at least to a limited extent, DNA binding sequences 5 to theQUTE gene.  相似文献   

14.
Catabolic dehydroquinase, which functions in the inducible quinic acid catabolic pathway of Neurospora crassa, has been purified from wild type (74-A) and three mutants in the qa gene cluster. The mutant strains were: 105c, a temperature-sensitive constitutive mutant in the qa-1 regulatory locus; M-16, a qa-3 mutant deficient in quinate dehydrogenase activity; and 237, a leaky qa-2 mutant which possess very low levels of catabolic dehydroquinase activity. The enzymes purified from strains 74-A, 105c, and M-16 are identical with respect to behavior during purification, specific activity, electrophoretic behavior, stability, molecular weight, subunit structure, immunological cross-reactivity, and amino acid content. The mutant enzyme from strain 237 is 1,500-fold less active and appears to have a slightly different amino acid content. It is identical by a number of the other criteria listed above and is presumed to be a mutant at or near the enzyme active site. These data demonstrate that the qa-1 gene product is not involved in the posttranslational expression of enzyme activity. The biochemical identity of catabolic dehydroquinase isolated from strains 105c and M-16 with that from wild type also demonstrates that neither the inducer, quinic acid, nor other enzymes encoded in the qa gene cluster are necessary for the expression of activity. Therefore the combined genetic and biochemical data on the qa system continue to support the hypothesis that the qa-1 regulatory protein acts as a positive initiator of qa enzyme synthesis.  相似文献   

15.
16.
17.
A 22.2-kb insert of Neurospora crassa DNA containing at least two of the genes from the inducible catabolic quinic acid pathway has been cloned into the cosmid vehicle pHC79 resulting in a recombinant plasmid, pMSK308. The qa-2+ locus (which encodes catabolic dehydroquinase) is functionally expressed in both Escherichia coli and qa-2 mutants of N. crassa transformed with pMSK308 plasmid DNA. Expression of the qa-3 gene (which encodes quinate dehydrogenase) is only detected upon reintroduction into N. crassa. Results were also obtained which suggested that the qa-4 gene, which maps between qa-2 and qa-3, may also be present on both pMSK308 and the previously described plasmid pVK88. Certain anomalies in the types of N. crassa transformants obtained with pMSK308 plasmid DNA were noted.  相似文献   

18.
The first three steps in quinic acid degradation in Aspergillus nidulans are catalysed by highly inducible enzymes encoded by a gene cluster regulated by an adjacent control region. Analysis of two non-inducible mutants has been done in diploid strains, where qutA8 is recessive and all three enzyme activities are fully induced in heterozygous qutA8/qutA+ diploids. In contrast, qutA4/qutA+ heterozygous diploids show semi-dominance of the mutant allele, giving markedly diminished growth on quinic acid and 30-40% decrease of enzyme induction. Strikingly, the qutA4/qutA8 heterozygous diploid grows to the same degree on quinic acid as the qutA4/qutA+ heterozygote and shows the same level of enzyme induction, whereas both the homozygous mutant diploids do not grow on quinic acid and show no enzyme induction. Therefore the two mutant genomes complement, identifying two distinct regulatory gene functions. A genetic model is proposed of a negatively acting gene (qutA) repressing expression of a positively acting gene (qutD, previously designated qutA8+) whose product is in turn required for expression of the three structural genes. The qutA4 mutation is interpreted to produce an altered repressor insensitive to quinic acid, and the qutD8 mutation the loss of activator protein. Close similarity in the regulation of the quinic acid gene cluster in Neurospora crassa suggests that the two types of control mutation, qalS and qalF, described for N. crassa may also reflect two regulatory genes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号