首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Order patterns recurrence plots in the analysis of ERP data   总被引:1,自引:1,他引:0  
Recurrence quantification analysis (RQA) is an established tool for data analysis in various behavioural sciences. In this article we present a refined notion of RQA based on order patterns. The use of order patterns is commonplace in time series analysis. Exploiting this concept in combination with recurrence plots (RP) and their quantification (RQA) allows for advances in contemporary EEG research, specifically in the analysis of event related potentials (ERP), as the method is known to be robust against non-stationary data. The use of order patterns recurrence plots (OPRPs) on EEG data recorded during a language processing experiment exemplifies the potentials of the method. We could show that the application of RQA to ERP data allows for a considerable reduction of the number of trials required in ERP research while still maintaining statistical validity.  相似文献   

2.
Electroencephalogram (EEG) signals acquired from brain can provide an effective representation of the human’s physiological and pathological states. Up to now, much work has been conducted to study and analyze the EEG signals, aiming at spying the current states or the evolution characteristics of the complex brain system. Considering the complex interactions between different structural and functional brain regions, brain network has received a lot of attention and has made great progress in brain mechanism research. In addition, characterized by autonomous, multi-layer and diversified feature extraction, deep learning has provided an effective and feasible solution for solving complex classification problems in many fields, including brain state research. Both of them show strong ability in EEG signal analysis, but the combination of these two theories to solve the difficult classification problems based on EEG signals is still in its infancy. We here review the application of these two theories in EEG signal research, mainly involving brain–computer interface, neurological disorders and cognitive analysis. Furthermore, we also develop a framework combining recurrence plots and convolutional neural network to achieve fatigue driving recognition. The results demonstrate that complex networks and deep learning can effectively implement functional complementarity for better feature extraction and classification, especially in EEG signal analysis.  相似文献   

3.
Nonlinear changes in brain electrical activity due to cell phone radiation   总被引:6,自引:0,他引:6  
We studied the effect of an electromagnetic field from a cellular telephone on brain electrical activity, using a novel analytical method based on a nonlinear model. The electroencephalogram (EEG) from rabbits was embedded in phase space and local recurrence plots were calculated and quantified using recurrence quantitation analysis to permit statistical comparisons between filtered segments of exposed and control epochs from individual rabbits. When the rabbits were exposed to the radiation from a standard cellular telephone (800 MHz band, 600 mW maximum radiated power) under conditions that simulated normal human use, the EEG was significantly affected in nine of ten animals studied. The effect occurred beginning about 100 ms after initiation of application of the field and lasted approximately 300 ms. In each case, the fields increased the randomness in the EEG. A control procedure ruled out the possibility that the observations were a product of the method of analysis. No differences were found between exposed and control epochs in any animal when the experiment was repeated after the rabbits had been sacrificed, indicating that absorption of radiation by the EEG electrodes could not account for the observed effect. No effect was seen when deposition of energy in the brain was minimized by repositioning the radiating antenna from the head to the chest, showing that the type of tissue that absorbed the energy determined the observed changes in the EEG. We conclude that, in normal use, the fields from a standard cellular telephone can alter brain function as a consequence of absorption of energy by the brain.  相似文献   

4.
In diagnosis of brain death for human organ transplant, EEG (electroencephalogram) must be flat to conclude the patient’s brain death but it has been reported that the flat EEG test is sometimes difficult due to artifacts such as the contamination from the power supply and ECG (electrocardiogram, the signal from the heartbeat). ICA (independent component analysis) is an effective signal processing method that can separate such artifacts from the EEG signals. Applying ICA to EEG channels, we obtain several separated components among which some correspond to the brain activities while others contain artifacts. This paper aims at automatic selection of the separated components based on time series analysis. In the flat EEG test in brain death diagnosis, such automatic component selection is helpful.  相似文献   

5.
The majority of brain activities are performed by functionally integrating separate regions of the brain. Therefore, the synchronous operation of the brain’s multiple regions or neuronal assemblies can be represented as a network with nodes that are interconnected by links. Because of the complexity of brain interactions and their varying effects at different levels of complexity, one of the corresponding authors of this paper recently proposed the brainnetome as a new –ome to explore and integrate the brain network at different scales. Because electroencephalography (EEG) and magnetoencephalography (MEG) are noninvasive and have outstanding temporal resolution and because they are the primary clinical techniques used to capture the dynamics of neuronal connections, they lend themselves to the analysis of the neural networks comprising the brainnetome. Because of EEG/MEG’s applicability to brainnetome analyses, the aim of this review is to identify the procedures that can be used to form a network using EEG/MEG data in sensor or source space and to promote EEG/MEG network analysis for either neuroscience or clinical applications. To accomplish this aim, we show the relationship of the brainnetome to brain networks at the macroscale and provide a systematic review of network construction using EEG and MEG. Some potential applications of the EEG/MEG brainnetome are to use newly developed methods to associate the properties of a brainnetome with indices of cognition or disease conditions. Associations based on EEG/MEG brainnetome analysis may improve the comprehension of the functioning of the brain in neuroscience research or the recognition of abnormal patterns in neurological disease.  相似文献   

6.
Split-test Bonferroni correction for QEEG statistical maps   总被引:2,自引:0,他引:2  
With statistical testing, corrections for multiple comparisons, such as Bonferroni adjustments, have given rise to controversies in the scientific community, because of their negative impact on statistical power. This impact is especially problematic for high-multidimensional data, such as multi-electrode brain recordings. With brain imaging data, a reliable method is needed to assess statistical significance of the data without losing statistical power. Conjunction analysis allows the combination of significance and consistency of an effect. Through a balanced combination of information from retest experiments (multiple trials split testing), we present an intuitively appealing, novel approach for brain imaging conjunction. The method is then tested and validated on synthetic data followed by a real-world test on QEEG data from patients with Alzheimer’s disease. This latter application requires both reliable type-I error and type-II error rates, because of the poor signal-to-noise ratio inherent in EEG signals.  相似文献   

7.
During the past decade, spectral analysis has become indispensable instrument for different kinds of EEG processing. With the development of dedicated computer system, investigation of shifts in human EEG rhythm under various conditions has improved considerably. However, it is difficult to make general conclusions from this line of research, since a large number of studies are carried out using the ambiguous experimental approaches and different methods. Present paper aims to evaluate a modern state of the art in the field of human EEG rhythmical structure investigation. The results from recent relevant articles are briefly reviewed according to the universal scheme (EEG rhythm--experimental condition--observed effect). Due to such presentation, the obtained results have been summarized and some tendencies of modern investigations have been revealed. The extension of studied frequency range of rhythmical EEG components to both high (> 35 Hz) and low (< 1 Hz) frequencies, the shift to a more detailed spectral structure analysis simultaneously with ignoring the fixed boundaries of traditional EEG rhythms, the growing attempts to reveal EEG rhythmical structure correlates of cognitive activity, and a wide utilization of dynamic approaches for the analysis of brain electrical activity are discussed in some detail. The observed data are indicate of high functional significance and perspectives of human EEG rhythmical structure investigation.  相似文献   

8.
9.
In healthy subjects, sleep has a typical structure of three to five cyclic transitions between different sleep states. In major depression, this regular pattern is often destroyed but can be reestablished during successful treatment. The differences between healthy and abnormal sleep are generally assessed in a time-consuming process, which consists of determining the nightly variations of the sleep states (the hypnogram) based on visual inspection of the electroencephalogram (EEG), electrooculogram, and electromyogram. In this study, three different methods of sleep EEG analysis (spectrum, outlier, and recurrence analysis) have been examined with regard to their ability to extract information about treatment effects in patients with major depression. Our data suggest that improved sleep patterns during treatment with antidepressant medication can be identified with an appropriate analysis of the EEG. By comparing different methods, we have found that many treatment effects identified by spectrum analysis can be reproduced by the much simpler technique of outlier analysis. Finally, the cyclic structure of sleep and its modification by antidepressant treatment is best illustrated by a non-linear approach, the so-called recurrence method.  相似文献   

10.
The mouse model is an important research tool in neurosciences to examine brain function and diseases with genetic perturbation in different brain regions. However, the limited techniques to map activated brain regions under specific experimental manipulations has been a drawback of the mouse model compared to human functional brain mapping. Here, we present a functional brain mapping method for fast and robust in vivo brain mapping of the mouse brain. The method is based on the acquisition of high density electroencephalography (EEG) with a microarray and EEG source estimation to localize the electrophysiological origins. We adapted the Fieldtrip toolbox for the source estimation, taking advantage of its software openness and flexibility in modeling the EEG volume conduction. Three source estimation techniques were compared: Distribution source modeling with minimum-norm estimation (MNE), scanning with multiple signal classification (MUSIC), and single-dipole fitting. Known sources to evaluate the performance of the localization methods were provided using optogenetic tools. The accuracy was quantified based on the receiver operating characteristic (ROC) analysis. The mean detection accuracy was high, with a false positive rate less than 1.3% and 7% at the sensitivity of 90% plotted with the MNE and MUSIC algorithms, respectively. The mean center-to-center distance was less than 1.2 mm in single dipole fitting algorithm. Mouse microarray EEG source localization using microarray allows a reliable method for functional brain mapping in awake mouse opening an access to cross-species study with human brain.  相似文献   

11.
The space station is available from 2004 for scientific research including human physiology and medicine. In that instance, non-invasive research of human brain in the microgravity condition was highly required. The present newly developed dipole tracing method fits this research purpose, by determining current source in the brain from EEG activity. EEG is also very helpful to monitor the conditions of subjects in various hazard cases. We strongly recommend to use this apparatus in the space station.  相似文献   

12.
针对目前多分类运动想象脑电识别存在特征提取单一、分类准确率低等问题,提出一种多特征融合的四分类运动想象脑电识别方法来提高识别率。对预处理后的脑电信号分别使用希尔伯特-黄变换、一对多共空间模式、近似熵、模糊熵、样本熵提取结合时频—空域—非线性动力学的初始特征向量,用主成分分析降维,最后使用粒子群优化支持向量机分类。该算法通过对国际标准数据集BCI2005 Data set IIIa中的k3b受试者数据经MATLAB仿真处理后获得93.30%的识别率,均高于单一特征和其它组合特征下的识别率。分别对四名实验者实验采集运动想象脑电数据,使用本研究提出的方法处理获得了72.96%的平均识别率。结果表明多特征融合的特征提取方法能更好的表征运动想象脑电信号,使用粒子群支持向量机可取得较高的识别准确率,为人脑的认知活动提供了一种新的识别方法。  相似文献   

13.
Changes in conscious level have been associated with changes in dynamical integration and segregation among distributed brain regions. Recent theoretical developments emphasize changes in directed functional (i.e., causal) connectivity as reflected in quantities such as 'integrated information' and 'causal density'. Here we develop and illustrate a rigorous methodology for assessing causal connectivity from electroencephalographic (EEG) signals using Granger causality (GC). Our method addresses the challenges of non-stationarity and bias by dividing data into short segments and applying permutation analysis. We apply the method to EEG data obtained from subjects undergoing propofol-induced anaesthesia, with signals source-localized to the anterior and posterior cingulate cortices. We found significant increases in bidirectional GC in most subjects during loss-of-consciousness, especially in the beta and gamma frequency ranges. Corroborating a previous analysis we also found increases in synchrony in these ranges; importantly, the Granger causality analysis showed higher inter-subject consistency than the synchrony analysis. Finally, we validate our method using simulated data generated from a model for which GC values can be analytically derived. In summary, our findings advance the methodology of Granger causality analysis of EEG data and carry implications for integrated information and causal density theories of consciousness.  相似文献   

14.
目的:本文对酒精引起的人脑状态变化进行讨论。通过对客观记录的受试者摄入酒精事件的脑电图数据进行系统聚类分析,从而分析摄入酒精事件与21导联电极分类的关系,进而为有关人脑的其它研究提供实验和理论根据。方法:选取4名习惯用右手、健康的人进行实验,采用标准21个脑电极的10-20导联系统,获取受试者在安静闭眼和摄入一定量啤酒的2个事件的脑电图数据。然后进行数据分析。数据分析的方法是系统聚类分析方法。程序实现采用独立设计的脑电图分析工具箱和聚类分析程序。结果:对脑电图数据聚类分析后发现,未喝酒时脑电活动大致按前额部和中央、后头部、两侧得到3个聚类簇;摄入200毫升啤酒后,受试者P1和P2的大部分额部电极、中央部电极以及后头部电极聚类为一个簇,个别颞部、后头部电极聚类为一个簇,或单个电极独立为一簇,形成孤立点;摄入400毫升啤酒后,受试者P3和P4的大部分额极电极、额部电极、中央部电极以及后头部电极聚类为一个簇,个别额部、中央部、颞部单个电极独立为一簇,形成孤立点。结论:脑电活动对摄入酒精有显著反应。由于人在安静闭眼状态下,后头部记录到的α波较为显著,所以未喝酒时前后头部脑电信号相关性较弱,受试者前后头部的电极基本不在一个聚类簇中;摄入酒精后,受试者大部分额部、中央部和后头部电极聚类为一簇,即前后头部脑电信号的相关性增强,这说明在酒精的作用下,前头部α波增加,α波呈现扩大和增强的趋势。  相似文献   

15.
In bio-signal applications, classification performance depends greatly on feature extraction, which is also the case for electroencephalogram (EEG) based applications. Feature extraction, and consequently classification of EEG signals is not an easy task due to their inherent low signal-to-noise ratios and artifacts. EEG signals can be treated as the output of a non-linear dynamical (chaotic) system in the human brain and therefore they can be modeled by their dimension values. In this study, the variance fractal dimension technique is suggested for the modeling of movement-related potentials (MRPs). Experimental data sets consist of EEG signals recorded during the movements of right foot up, lip pursing and a simultaneous execution of these two tasks. The experimental results and performance tests show that the proposed modeling method can efficiently be applied to MRPs especially in the binary approached brain computer interface applications aiming to assist severely disabled people such as amyotrophic lateral sclerosis patients in communication and/or controlling devices.  相似文献   

16.
There is growing interest in understanding how the brain utilizes synchronized oscillatory activity to integrate information across functionally connected regions. Computing phase-locking values (PLV) between EEG signals is a popular method for quantifying such synchronizations and elucidating their role in cognitive tasks. However, high-dimensionality in PLV data incurs a serious multiple testing problem. Standard multiple testing methods in neuroimaging research (e.g., false discovery rate, FDR) suffer severe loss of power, because they fail to exploit complex dependence structure between hypotheses that vary in spectral, temporal and spatial dimension. Previously, we showed that a hierarchical FDR and optimal discovery procedures could be effectively applied for PLV analysis to provide better power than FDR. In this article, we revisit the multiple comparison problem from a new Empirical Bayes perspective and propose the application of the local FDR method (locFDR; Efron, 2001) for PLV synchrony analysis to compute FDR as a posterior probability that an observed statistic belongs to a null hypothesis. We demonstrate the application of Efron''s Empirical Bayes approach for PLV synchrony analysis for the first time. We use simulations to validate the specificity and sensitivity of locFDR and a real EEG dataset from a visual search study for experimental validation. We also compare locFDR with hierarchical FDR and optimal discovery procedures in both simulation and experimental analyses. Our simulation results showed that the locFDR can effectively control false positives without compromising on the power of PLV synchrony inference. Our results from the application locFDR on experiment data detected more significant discoveries than our previously proposed methods whereas the standard FDR method failed to detect any significant discoveries.  相似文献   

17.
Deep learning techniques have recently made considerable advances in the field of artificial intelligence. These methodologies can assist psychologists in early diagnosis of mental disorders and preventing severe trauma. Major Depression Disorder (MDD) is a common and serious medical condition whose exact manifestations are not fully understood. So, early discovery of MDD patients helps to cure or limit the adverse effects. Electroencephalogram (EEG) is prominently used to study brain diseases such as MDD due to having high temporal resolution information, and being a noninvasive, inexpensive and portable method. This paper has proposed an EEG-based deep learning framework that automatically discriminates MDD patients from healthy controls. First, the relationships among EEG channels in the form of effective brain connectivity analysis are extracted by Generalized Partial Directed Coherence (GPDC) and Direct directed transfer function (dDTF) methods. A novel combination of sixteen connectivity methods (GPDC and dDTF in eight frequency bands) was used to construct an image for each individual. Finally, the constructed images of EEG signals are applied to the five different deep learning architectures. The first and second algorithms were based on one and two-dimensional convolutional neural network (1DCNN–2DCNN). The third method is based on long short-term memory (LSTM) model, while the fourth and fifth algorithms utilized a combination of CNN with LSTM model namely, 1DCNN-LSTM and 2DCNN-LSTM. The proposed deep learning architectures automatically learn patterns in the constructed image of the EEG signals. The efficiency of the proposed algorithms is evaluated on resting state EEG data obtained from 30 healthy subjects and 34 MDD patients. The experiments show that the 1DCNN-LSTM applied on constructed image of effective connectivity achieves best results with accuracy of 99.24% due to specific architecture which captures the presence of spatial and temporal relations in the brain connectivity. The proposed method as a diagnostic tool is able to help clinicians for diagnosing the MDD patients for early diagnosis and treatment.  相似文献   

18.
This paper presents a new method of analysis by which structural similarities between brain data and linguistic data can be assessed at the semantic level. It shows how to measure the strength of these structural similarities and so determine the relatively better fit of the brain data with one semantic model over another. The first model is derived from WordNet, a lexical database of English compiled by language experts. The second is given by the corpus-based statistical technique of latent semantic analysis (LSA), which detects relations between words that are latent or hidden in text. The brain data are drawn from experiments in which statements about the geography of Europe were presented auditorily to participants who were asked to determine their truth or falsity while electroencephalographic (EEG) recordings were made. The theoretical framework for the analysis of the brain and semantic data derives from axiomatizations of theories such as the theory of differences in utility preference. Using brain-data samples from individual trials time-locked to the presentation of each word, ordinal relations of similarity differences are computed for the brain data and for the linguistic data. In each case those relations that are invariant with respect to the brain and linguistic data, and are correlated with sufficient statistical strength, amount to structural similarities between the brain and linguistic data. Results show that many more statistically significant structural similarities can be found between the brain data and the WordNet-derived data than the LSA-derived data. The work reported here is placed within the context of other recent studies of semantics and the brain. The main contribution of this paper is the new method it presents for the study of semantics and the brain and the focus it permits on networks of relations detected in brain data and represented by a semantic model.  相似文献   

19.
脑死亡诊断是有关病人生死的重要问题.许多国家都把脑电平坦列为脑死亡诊断的基本条件,但研究发现并非所有的脑死亡患者均表现为脑电平坦,同时脑昏迷患者在部分情况下也会表现出脑电平坦的现象,从而有可能在临床中造成误判.C0复杂度判断指标能够利用脑电信号中的复杂度特性帮助临床诊断中对于脑死亡和脑昏迷状况的鉴别.运用C0复杂度算法对22位脑死亡和脑昏迷病例进行分析实验,可以发现脑死亡脑电信号的复杂度明显高于脑昏迷脑电信号的复杂度.实验表明C0复杂度可以用来有效地区分脑死亡和脑昏迷脑电信号,具有潜在的重要临床价值.  相似文献   

20.
To explore the effects of manual acupuncture (MA) on brain activities, we design an experiment that acupuncture at acupoint ST36 of right leg with four different frequencies to obtain electroencephalograph (EEG) signals. Many studies have demonstrated that the complexity of EEG can reflect the states of brain function, so we propose to adopt order recurrence quantification analysis combined with discrete wavelet transform, to analyze the dynamical characteristics of different EEG rhythms under acupuncture, further to explore the effects of MA on the complexity of brain activities from multi-scale point of view. By analyzing the complexity of five EEG rhythms, it is found that the complexity of delta rhythm during acupuncture is lower than before acupuncture, and for alpha rhythm that is higher, but for beta, theta and gamma rhythms there are no obvious changes. All of those effects are especially obvious during acupuncture with frequency of 200 times/min. Furthermore, the determinism extracted from delta, alpha and gamma rhythms can be regarded as a characteristic parameter to distinguish the state acupuncture at 200 times/min and the state before acupuncture. These results can provide a theoretical support for selecting appropriate acupuncture frequency for patients in clinical, and the proposed methods have the potential of exploring the effects of acupuncture on brain activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号