首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have estimated the number of sika deer, Cervus nippon, in Hokkaido, Japan, with the aim of developing a management program that will reduce the level of agricultural damage caused by these deer. A population index that is defined by the population divided by the population of 1993 is first estimated from the data obtained during a spotlight survey. A generalized linear mixed model (GLMM) with corner point constraints is used in this estimation. We then estimate the population from the index by evaluating the response of index to the known amount of harvest, including hunting. A stage-structured model is used in this harvest-based estimation. It is well-known that estimates of indices suffer from large observation errors when the probability of the observation fluctuates widely; therefore, we apply state-space modeling to the harvest-based estimation to remove the observation errors. We propose the use of Bayesian estimation with uniform prior-distributions as an approximation of the maximum likelihood estimation, without permitting an arbitrary assumption that the parameters fluctuate following prior-distributions. We are able to demonstrate that the harvest-based Bayesian estimation is effective in reducing the observation errors in sika deer populations, but the stage-structured model requires many demographic parameters to be known prior to running the analyses. These parameters cannot be estimated from the observed time-series of the index if there is insufficient data. We then construct a univariate model by simplifying the stage-structured model and show that the simplified model yields estimates that are nearly identical to those obtained from the stage-structured model. This simplification of the model simultaneously clarifies which parameter is important in estimating the population. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
3.
4.
Ecological diffusion is a theory that can be used to understand and forecast spatio‐temporal processes such as dispersal, invasion, and the spread of disease. Hierarchical Bayesian modelling provides a framework to make statistical inference and probabilistic forecasts, using mechanistic ecological models. To illustrate, we show how hierarchical Bayesian models of ecological diffusion can be implemented for large data sets that are distributed densely across space and time. The hierarchical Bayesian approach is used to understand and forecast the growth and geographic spread in the prevalence of chronic wasting disease in white‐tailed deer (Odocoileus virginianus). We compare statistical inference and forecasts from our hierarchical Bayesian model to phenomenological regression‐based methods that are commonly used to analyse spatial occurrence data. The mechanistic statistical model based on ecological diffusion led to important ecological insights, obviated a commonly ignored type of collinearity, and was the most accurate method for forecasting.  相似文献   

5.
State space methods have proven indispensable in neural data analysis. However, common methods for performing inference in state-space models with non-Gaussian observations rely on certain approximations which are not always accurate. Here we review direct optimization methods that avoid these approximations, but that nonetheless retain the computational efficiency of the approximate methods. We discuss a variety of examples, applying these direct optimization techniques to problems in spike train smoothing, stimulus decoding, parameter estimation, and inference of synaptic properties. Along the way, we point out connections to some related standard statistical methods, including spline smoothing and isotonic regression. Finally, we note that the computational methods reviewed here do not in fact depend on the state-space setting at all; instead, the key property we are exploiting involves the bandedness of certain matrices. We close by discussing some applications of this more general point of view, including Markov chain Monte Carlo methods for neural decoding and efficient estimation of spatially-varying firing rates.  相似文献   

6.
7.
We propose a class of longitudinal data models with random effects that generalizes currently used models in two important ways. First, the random-effects model is a flexible mixture of multivariate normals, accommodating population heterogeneity, outliers, and nonlinearity in the regression on subject-specific covariates. Second, the model includes a hierarchical extension to allow for meta-analysis over related studies. The random-effects distributions are decomposed into one part that is common across all related studies (common measure), and one part that is specific to each study and that captures the variability intrinsic between patients within the same study. Both the common measure and the study-specific measures are parameterized as mixture-of-normals models. We carry out inference using reversible jump posterior simulation to allow a random number of terms in the mixtures. The sampler takes advantage of the small number of entertained models. The motivating application is the analysis of two studies carried out by the Cancer and Leukemia Group B (CALGB). In both studies, we record for each patient white blood cell counts (WBC) over time to characterize the toxic effects of treatment. The WBCs are modeled through a nonlinear hierarchical model that gathers the information from both studies.  相似文献   

8.
9.
Spatial weed count data are modeled and predicted using a generalized linear mixed model combined with a Bayesian approach and Markov chain Monte Carlo. Informative priors for a data set with sparse sampling are elicited using a previously collected data set with extensive sampling. Furthermore, we demonstrate that so-called Langevin-Hastings updates are useful for efficient simulation of the posterior distributions, and we discuss computational issues concerning prediction.  相似文献   

10.
Summary .   In this article, we apply the recently developed Bayesian wavelet-based functional mixed model methodology to analyze MALDI-TOF mass spectrometry proteomic data. By modeling mass spectra as functions, this approach avoids reliance on peak detection methods. The flexibility of this framework in modeling nonparametric fixed and random effect functions enables it to model the effects of multiple factors simultaneously, allowing one to perform inference on multiple factors of interest using the same model fit, while adjusting for clinical or experimental covariates that may affect both the intensities and locations of peaks in the spectra. For example, this provides a straightforward way to account for systematic block and batch effects that characterize these data. From the model output, we identify spectral regions that are differentially expressed across experimental conditions, in a way that takes both statistical and clinical significance into account and controls the Bayesian false discovery rate to a prespecified level. We apply this method to two cancer studies.  相似文献   

11.
12.
13.
The ecological study design suffers from a broad range of biases that result from the loss of information regarding the joint distribution of individual-level outcomes, exposures, and confounders. The consequent nonidentifiability of individual-level models cannot be overcome without additional information; we combine ecological data with a sample of individual-level case-control data. The focus of this article is hierarchical models to account for between-group heterogeneity. Estimation and inference pose serious computational challenges. We present a Bayesian implementation based on a data augmentation scheme where the unobserved data are treated as auxiliary variables. The methods are illustrated with a dataset of county-specific infant mortality data from the state of North Carolina.  相似文献   

14.
We assume that multivariate observational data are generated from a distribution whose conditional independencies are encoded in a Directed Acyclic Graph (DAG). For any given DAG, the causal effect of a variable onto another one can be evaluated through intervention calculus. A DAG is typically not identifiable from observational data alone. However, its Markov equivalence class (a collection of DAGs) can be estimated from the data. As a consequence, for the same intervention a set of causal effects, one for each DAG in the equivalence class, can be evaluated. In this paper, we propose a fully Bayesian methodology to make inference on the causal effects of any intervention in the system. Main features of our method are: (a) both uncertainty on the equivalence class and the causal effects are jointly modeled; (b) priors on the parameters of the modified Cholesky decomposition of the precision matrices across all DAG models are constructively assigned starting from a unique prior on the complete (unrestricted) DAG; (c) an efficient algorithm to sample from the posterior distribution on graph space is adopted; (d) an objective Bayes approach, requiring virtually no user specification, is used throughout. We demonstrate the merits of our methodology in simulation studies, wherein comparisons with current state‐of‐the‐art procedures turn out to be highly satisfactory. Finally we examine a real data set of gene expressions for Arabidopsis thaliana.  相似文献   

15.
Human immunodeficiency virus (HIV) dynamics represent a complicated variant of the text-book case of non-linear dynamics: predator-prey interaction. The interaction can be described as naturally reproducing T-cells (prey) hunted and killed by virus (predator). Virus reproduce and increase in number as a consequence of successful predation; this is countered by the production of T-cells and the reaction of the immune system. Multi-drug anti-HIV therapy attempts to alter the natural dynamics of the predator-prey interaction by decreasing the reproductive capability of the virus and hence predation. These dynamics are further complicated by varying compliance to treatment and insurgence of resistance to treatment. When following the temporal progression of viral load in plasma during therapy one observes a short-term (1-12 weeks) decrease in viral load. In the long-term (more than 12 weeks from the beginning of therapy) the reduction in viral load is either sustained, or it is followed by a rebound, oscillations and a new (generally lower than at the beginning of therapy) viral load level. Biomathematicians have investigated these dynamics by means of simulations. However the estimation of the parameters associated with the dynamics from real data has been mostly limited to the case of simplified, in particular linearized, models. Linearized model can only describe the short-term changes of viral load during therapy and can only predict (apparent) suppression. In this paper we put forward relatively simple models to characterize long-term virus dynamics which can incorporate different factors associated with resurgence: (Fl) the intrinsic non-linear HIV-1 dynamics, (F2) drug exposure and in particular compliance to treatment, and (F3) insurgence of resistant HIV-1 strains. The main goal is to obtain models which are mathematically identifiable given only measurements of viral load, while retaining the most crucial features of HIV dynamics. For the purpose of illustration we demonstrate an application of the models using real AIDS clinical trial data involving patients treated with a combination of anti-retroviral agents using a model which incorporates compliance data.  相似文献   

16.
This paper demonstrates the advantages of sharing information about unknown features of covariates across multiple model components in various nonparametric regression problems including multivariate, heteroscedastic, and semicontinuous responses. In this paper, we present a methodology which allows for information to be shared nonparametrically across various model components using Bayesian sum-of-tree models. Our simulation results demonstrate that sharing of information across related model components is often very beneficial, particularly in sparse high-dimensional problems in which variable selection must be conducted. We illustrate our methodology by analyzing medical expenditure data from the Medical Expenditure Panel Survey (MEPS). To facilitate the Bayesian nonparametric regression analysis, we develop two novel models for analyzing the MEPS data using Bayesian additive regression trees—a heteroskedastic log-normal hurdle model with a “shrink-toward-homoskedasticity” prior and a gamma hurdle model.  相似文献   

17.
The juvenile life stage is a crucial determinant of forest dynamics and a first indicator of changes to species' ranges under climate change. However, paucity of detailed re-measurement data of seedlings, saplings and small trees means that their demography is not well understood at large scales, and rarely represented in forest models in detail. In this study we quantify the effects of climate and density dependence on recruitment and juvenile growth and mortality rates of thirteen species measured in the Spanish Forest Inventory. Single-census sapling count data is used to constrain demographic parameters of a simple forest juvenile dynamics model based on the perfect plasticity approximation model (PPA) within a likelihood-free parameterisation method, Approximate Bayesian Computation. Our results highlight marked differences between species, and the important role of climate and stand structure, in controlling juvenile dynamics. Recruitment had a hump-shaped relationship with conspecific density, and for most species conspecific competition had a stronger negative effect than heterospecific competition. Mediterranean species showed on average higher mortality and lower growth rates than temperate species, and in low density stands recruitment and mortality rates were positively correlated. Under climate change our model predicted declines in recruitment rates for almost all species. Reliable predictive models of forest dynamics should include realistic representation of critical early life-stage processes and our approach demonstrates that existing coarse count data can be used to parameterise such models. Approximate Bayesian Computation may have wide application in many fields of ecology to unlock information about past processes from single survey observations.  相似文献   

18.
In recent years, a suite of methods has been developed to fit multiple rate models to phylogenetic comparative data. However, most methods have limited utility at broad phylogenetic scales because they typically require complete sampling of both the tree and the associated phenotypic data. Here, we develop and implement a new, tree-based method called MECCA (Modeling Evolution of Continuous Characters using ABC) that uses a hybrid likelihood/approximate Bayesian computation (ABC)-Markov-Chain Monte Carlo approach to simultaneously infer rates of diversification and trait evolution from incompletely sampled phylogenies and trait data. We demonstrate via simulation that MECCA has considerable power to choose among single versus multiple evolutionary rate models, and thus can be used to test hypotheses about changes in the rate of trait evolution across an incomplete tree of life. We finally apply MECCA to an empirical example of body size evolution in carnivores, and show that there is no evidence for an elevated rate of body size evolution in the pinnipeds relative to terrestrial carnivores. ABC approaches can provide a useful alternative set of tools for future macroevolutionary studies where likelihood-dependent approaches are lacking.  相似文献   

19.
Johnson DS  Hoeting JA 《Biometrics》2003,59(2):341-350
In this article, we incorporate an autoregressive time-series framework into models for animal survival using capture-recapture data. Researchers modeling animal survival probabilities as the realization of a random process have typically considered survival to be independent from one time period to the next. This may not be realistic for some populations. Using a Gibbs sampling approach, we can estimate covariate coefficients and autoregressive parameters for survival models. The procedure is illustrated with a waterfowl band recovery dataset for northern pintails (Anas acuta). The analysis shows that the second lag autoregressive coefficient is significantly less than 0, suggesting that there is a triennial relationship between survival probabilities and emphasizing that modeling survival rates as independent random variables may be unrealistic in some cases. Software to implement the methodology is available at no charge on the Internet.  相似文献   

20.
In September 2011, the University of Essex, UK, hosted an interdisciplinary conference, Mathematical and Theoretical Ecology 2011 (MATE 2011), with the theme of ‘Linking models with ecological processes’. The aim of the meeting was to create discussion and debate between modellers and empiricists working in ecology. A wide range of topics were discussed at the meeting including evolutionary and community models of ecosystem structure, epidemiological models, non-linear models of population dynamics, spatiotemporal models, individual and collective movement behaviour, and applications of ecological models to engineering problems. In this introductory article, we provide a report of the MATE 2011 meeting, and briefly review the most recent relevant research in the fields of mathematical and theoretical ecology. We introduce and summarise the eight contributed articles that were selected for this special issue. The diverse range of topics and the wide range of mathematical, statistical and computational tools used illustrate the broad appeal and depth of research in the rich field of mathematical and theoretical ecology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号