首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mutational interaction between radiation at 365 and 254 nm was studied in various strains of E. coli by a mutant assay based on reversion to amino-acid independence in full nutrient conditions. In the two repair-proficient strains (K12 AB 1157 and B/r), pre-treatment with radiation at 365 nm strongly suppressed the induction of mutations by far-UV, a phenomenon accompanied by a strong lethal interaction. The frequency of mutations induced by far-UV progressively declined with increasing dose of near-UV. Far-UV-induced mutagenesis to T5 resistance was almost unaltered by pre-treatment with near-UV. In AB 1886 uvrA there was no lethal interaction between the two wavelengths but the mutagenic interaction was synergistic. This synergism was maximal at a 365-nm dose of 8 X 10(5) J m-2. It is proposed that in the wild-type strain, cells containing potentially mutagenic lesions are selectively eliminated from the population because of abortive excision of an error-prone repair-inducing signal. In excisionless strains, 365-nm radiation may be less damaging to the error-prone than to the error-free post-replication repair system. Alternatively, mutation may be enhanced because of the occurrence of error-prone repair of 365-nm lesions by a system that is not induced in the absence of 254-nm radiation.  相似文献   

2.
Comparative mutagenesis and possible synergistic interaction between broad-spectrum (313- to 405-nm) near-ultraviolet (black light bulb [BLB]) radiation and 254-nm radiation were studied in Escherichia coli strains WP2 (wild type), WP2s (uvrA), WP10 (recA), WP6 (polA), WP6s (polA uvrA), WP100 (uvrA recA), and WP5 (lexA). With BLB radiation, strains WP2s and WP6s demonstrated a high level of mutagenesis, whereas strains WP2, WP5, WP6, WP10, and WP100 did not demonstrate significant mutagenesis. In contrast, 254-nm radiation was mutagenic in strains WP2, WP2s, WP6, and WP6s, but strains WP5, WP10, and WP100 were not significantly mutated. The absence of mutagenesis by BLB radiation in lexA and recA strains WP10, WP5, and WP100 suggests that lex+ rec+ repair may play a major role in mutagenesis by both BLB and 254-nm radiation. The hypothesis that BLB radiation selectively inhibits rec+ lex+ repair was tested by sequential BLB-254-nm radiation. With strain WP2, a fluence of 30 J/m2 at 254 nm induced trp+ revertants at a frequency of 15 X 10(-6). However, when 10(5) J/m2 or more of BLB radiation preceded the 254-nm exposure, no trp+ revertants could be detected. A similar inhibition of 254-nm mutagenesis was observed with strain WP6 (polA). However, strains WP2s (uvrA) and wP6s (polA uvrA) showed enhanced 254-nm mutagenesis when a prior exposure to BLB radiation was given.  相似文献   

3.
Reversion to tryptophan independence induced by 365-nm and 254-nm radiation was studied in Escherichia coli WP2s (B/r trp uvrA). Under aerobic conditions, the mutant frequency responses was of the fluence-square or "two-hit" type at both 365 and 254 nm when revertants were assayed on minimal agar supplemented with 2% nutrient broth (SEM plates). In contrast, when mutants were assayed on minimal agar supplemented with tryptophan only, the revertant yield was reduced to very low values at 365 nm, whereas values substantially greater than with SEM plates were obtained at 254 nm. Premutational lesions induced by both 365-nm and 254-nm radiation were photoreactivated more than 10-fold when assayed on SEM plates, implicating pyrimidine dimers as premutational lesions at both wavelengths. The strong photoreactivation of 365-nm-induced mutagenesis contrasted strikingly with the complete absence of photoreactivation of 365-nm-induced lethality in this strain.  相似文献   

4.
W Harm 《Mutation research》1978,51(3):301-310
Three pairs of E. coli strains with different dark-repair potentials, viz. H/r30 and H/r30-R, Hs30 Hs30-R, CSR 603 and AB 2480, have been investigated for their survival after exposure to 254-nm and 365-nm radiation. Each pair consists of a non-photorepairable (phr?) and a photorepairable (phr+) strain of otherwise identical or similar genotype. At 254 nm, the mean inactivation fluence (F0.37) is for the dark-repair proficient phr? strain (H/r30) 300–750 times greater than for the completely dark-repair deficient phrtt- strain (CSR 603), but at 365 nm the F0.37's differ by a factor of only 5–10. Comparison of survival curves of phr? and phr+ strains indicates that, at all three levels of dark-repair potential, lethal damage resulting from 365-nm exposure is extensively photorepaired by the same wavelength. Qualitatively similar effects were observed with sunlight from which all wavelengths < 360 nm were filtered out. Furthermore, we have shown that fluences of 365-nm radiation used in our experiments do not damage the enzymatic dark-repair systems themselves. These results seem compatible with one another only if one assumes that photoenzymatic repair is capable of abolishing lethal DNA damage other than the common types of cyclobutane dipyrimidines occurring after 254-nm irradiation.  相似文献   

5.
Action spectra were determined for cell killing and mutation by monochromatic ultraviolet and visible radiations (254-434 nm) in cultured human epithelial P3 cells. Cell killing was more efficient following radiation at the shorter wavelengths (254-434 nm) than at longer wavelengths (365-434 nm). At 254 nm, for example, a fluence of 11 Jm-2 gave 37% cell survival, while at 365 nm, 17 X 10(5) Jm-2 gave equivalent survival. At 434 nm little killing was observed with fluences up to 3 X 10(6) Jm-2. Mutant induction, determined at the hypoxanthine-guanine phosphoribosyltransferase locus, was caused by radiation at 254, 313, and 365 nm. There was no mutant induction at 334 nm although this wavelength was highly cytotoxic. Mutagenesis was not induced by 434 nm radiation, either. There was a weak response at 405 nm; the mutant frequencies were only slightly increased above background levels. For the mutagenic wavelengths, log-log plots of the mutation frequency against fluence showed linear regressions with positive slopes of 2.5, consistent with data from a previous study using Escherichia coli. The data points of the action spectra for lethality and mutagenesis were similar to the spectrum for DNA damage at wavelengths shorter than 313 nm, whereas at longer wavelengths the lethality spectrum had a shoulder, and the mutagenesis spectrum had a secondary peak at 365 nm. No correlation was observed for the P3 cells between the spectra for cell killing and mutagenesis caused by wavelengths longer than 313 nm and the induction of DNA breakage or the formation of DNA-to-protein covalent bonds in these cells.  相似文献   

6.
Photoreactivation (PR) after 365-nm inactivation was measured in four strains of Escherichia coli differing in repair capability. Photoreactivation was observed in the recA strains K12 and AB2480 and K12 AB2463 indicating a significant role of pyrimide dimers in the lethal action of 365-nm radiation in these strains. Significant PR was not observed in the uvrA strain, K12 AB1886, or in the repair proficient strain, K12 AB1157, after 265-nm inactivation. Biological evidence indicated that stationary phase cells had not lost the capacity for photo-enzymatic repair after fluences of 365-nm radiation of 2 × 106 J/m−2 or less. It is proposed that pyrimidine dimers, although induced, are not significant 365-nm lethal lesions in uvrA and wild-type strains because of their efficient dark repair.  相似文献   

7.
A series of Escherichia coli K-12 AB1157 strains with normal and defective deoxyribonucleic acid repair capacity were more resistant to treatment with 8-methoxypsoralen (8-MOP) and near-ultraviolet light (NUV) than a comparable series of strains from the B/r WP2 family although sensitivities to 254-nm ultraviolet light were closely similar. The difference was most marked with strains deficient in both excision and postreplication repair (uvrA recA). The hypothesis that the internal level of 8-MOP was lower in K-12 than B/r uvrA recA derivatives was ruled out on the basis of fluorometric determinations of 8-MOP content and the similar inactivation curves for phage T3 treated intracellularly within the two strains. The demonstration of liquid holding recovery with AB2480 but not WP100 (both recA uvrA strains) and the somewhat greater resistance of the former strain to inactivation by captan revealed the presence in the K-12 strain of a deoxyribonucleic acid repair system independent of the recA(+) and uvrA(+) genes. The presence of this repair system did not, however, affect the survival of T3 phage treated with 8-MOP plus NUV and probably has a relatively small effect on survival of AB2480 under normal conditions. Experiments in which 8-MOP monoadducts were converted to cross-links by a second NUV exposure in the absence of 8-MOP indicated that the level of potentially cross-linkable monoadducts immediately after 8-MOP + NUV is about eightfold lower in K-12-than in B/r-derived strains. It is therefore suggested that the photoproduct yield in the former is well below that in the latter. In agreement with this is the observation that, during the first 10 min after treatment, deoxyribonucleic acid synthesis was just over five times more sensitive to inhibition by 8-MOP plus NUV in WP100 than in AB2480. We assume that 8-MOP in K-12 bacteria is hindered in some way from adsorbing to cellular (though not to phage T3) deoxyribonucleic acid. Consistent with this, 8-MOP has been shown to act as an inhibitor of a component of repair of 254-nm ultraviolet light damage in WP2 but not in AB1157.  相似文献   

8.
In UV-irradiated E. coli WP2 uvrA, deficient in excision repair of DNA with pyrimidine dimers, gamma-irradiation in low doses (radioadaptation) before UV-irradiation leads to the intensification of postreplication repair of DNA. This process in WP2 uvrA polA and uvrA lexA mutants is less than in WP2 uvrA cells, but in WP2 uvrA recA both postreplication repair and its radioadaptive intensification are absent. In E. coli AB1157 excising pyrimidine dimers the radioadaptive intensification of postreplication repair of DNA is expressed almost to the same extent as in WP2 uvrA. In GW2100 umuC mutant, deficient in DNA polymerase V, postreplication repair of DNA is expressed, but its radioadaptive intensification is absent, while in AB2463 recA13 both postreplication repair of DNA and radioadaptive intensification of postreplication repair of DNA are absent. The above data suggest that DNA polymerase I and LexA protein are needed for radioadaptive intensification of postreplication repair of DNA in uvrA strain, and DNA polymerase V is needed for radioadaptive intensification in E. coli AB1157, and that RecA protein is required for postreplication repair and radioadaptive intensification of postreplication repair of DNA.  相似文献   

9.
Hua X  Huang L  Tian B  Hua Y 《Mutation research》2008,643(1-2):48-53
Deinococcus radiodurans is a bacterium which can survive extremely DNA damage. To investigate the relationship between recQ and the ultraviolet radiation (UV) damage repair pathway, we created a four mutant strain by constructing recQ knockout mutants in uvrA1, uvrA2, and uvsE backgrounds. Using the rpoB/Rifr system, we measured the mutation frequencies and rates in wild type, recQ (MQ), uvsE uvrA1 uvrA2 (TNK006), and uvsE uvrA1 uvrA2 recQ (TQ). We then isolated Rifr mutants of these strains and sequenced the rpoB gene. The mutation frequency of TQ was 6.4, 10.1, and 2.43 times that of wild type, MQ, and TNK006, respectively, and resulted in rates of 4.7, 6.71, and 2.15 folds higher than that of wild type, MQ, and TNK006, respectively. All the strains demonstrated specific mutational hotspots. Furthermore, the TQ strain showed a transversion bias that was different from the other three strains. The results indicate that recQ is involved in the ultraviolet damage repair pathway via the interaction between recQ and uvrA1, uvrA2, and uvsE in D. radiodurans.  相似文献   

10.
Mitomycin C (MC) was tested for its killing and mutagenic activities in the ad-3 forward-mutation test in Neurospora crassa. The test was conducted in 4 dikaryons of N. crassa in order to determine the effect of the uvs-2 allele, which causes a defect in nucleotide excision repair, on MC-induced killing and ad-3 mutation. These dikaryons were homokaryotic for uvs-2+ (H-12), homokaryotic for uvs-2 (H-59), and heterokaryotic for uvs-2/uvs-2+ (H-70 and H-71). MC induced killing and ad-3 mutation in H-12, but the presence of uvs-2 in the homokaryotic state (H-59) resulted in a great increase in the killing and mutagenic activities of MC. This increased sensitivity to MC-induced killing and mutation conferred by uvs-2 in the homokaryotic state (H-59 vs. H-12) is a different effect than that noted by others for a defect in nucleotide excision-repair in Escherichia coli and Salmonella typhimurium or in human cells. The dikaryons heterokaryotic for uvs-2/uvs-2+ had the same sensitivity to MC as H-12, indicating that for MC-induced killing and ad-3 mutation uvs-2 is recessive to uvs-2+.  相似文献   

11.
Walter Harm   《Mutation research》1973,20(3):301-311
The survival of UV-irradiated phage T1 is much lower in excision repair-deficient than in excision repair-proficient E. coli cells, due to lack of “host cell reactivation” (HCR). An additional decrease in phage survival occurs when repair-deficient (HCR) host cells have been exposed to UV doses from 3000–10 000 erg mm−2 of 254 nm UV-radiation prior to infection. The observed effect is attributed to loss of a minor phage recovery process, which requires neither the bacterial excision repair nor the bacterial REC repair system. This type of recovery is little affected by caffeine or acriflavine at concentrations that preclude HCR completely. Its full inhibition by UV-irradiation of the cells requires an approximately 8 times larger dose than complete inhibition of HCR.

In heavily preirradiated cells, the T1 burst size is extremely small and multiplicity reactivation is considerably less extensive than in unirradiated cells. Presumably the survival of singly infecting T1 in these cells reflects absence of any type of repair. The observed phage sensitivity and shape of the curve are compatible with the expectation for completely repairless conditions. The mechanism underlying the minor recovery is not known; theoretical considerations make a phage REC repair mechanism seem likely.  相似文献   


12.
A strong lethal interaction was observed between various monochromatic wavelengths (254, 334, 365, and 405 nm) in the repair-proficient E. coli K-12 strain AB 1157, except in the case of preexposure to 405-nm radiation which resulted in a protection against the inactivation resulting from subsequent exposure to 365-or 254-nm radiations. The results may be tentatively explained by assuming two classes of DNA lesions and two classes of damage to repair (reversible and inrreversible) whose proportions vary according to wavelength.  相似文献   

13.
Brian Sauer  Nancy Henderson 《Gene》1988,70(2):331-341
The efficiency with which linearized plasmid DNA can transform competent Escherichia coli can be significantly increased by use of the Cre-lox site-specific recombination system of phage P1. Linear plasmid molecules containing directly repeated loxP sites (lox2 plasmids) are cyclized in Cre+ E. coli strains after introduction either by transformation or by mini-Mu transduction, Exonuclease V activity of the RecBC enzyme inhibits efficient cyclization of linearized lox2 plasmids after transformation. By use of E. coli mutants which lack exonuclease V activity, Cre-mediated cyclization results in transformation efficiencies for linearized lox2 plasmids identical to those obtained with covalently closed circular plasmid DNA. Moreover, Cre+ E. coli recBC strains allow the efficient recovery of lox2 plasmids integrated within large linear DNA molecules such as the 150-kb genome of pseudorabies virus.  相似文献   

14.
The effects of caffeine and acriflavine on cell survival, single-strand deoxyribonucleic acid break formation, and postreplication repair in Escherichia coli wild-type WP2 and WP2 uvrA strains after ultraviolet irradiation was studied. Caffeine (0.5 mg/ml) added before and immediately after ultraviolet irradiation inhibited single-strand deoxyribonucleic acid breakage in wild-type WP2 cells. Single-strand breaks, once formed, were no longer subject to repair inhibition by caffeine. At 0.5 to 2 mg/ml, caffeine did not affect postreplication repair in uvrA strains. These data are consistent with the survival data of both irradiated WP2 and uvrA strains in the presence and absence of caffeine. In unirradiated WP2 and uvrA strains, however, a high caffeine concentration (greater than 2 mg/ml) resulted in gradual reduction of colony-forming units. At a concentration insufficient to alter survival of unirradiated cells, acriflavine (2 microgram/ml) inhibited both single-strand deoxyribonucleic acid breakage and postreplication repair after ultraviolet irradiation. These data suggest that although the modes of action for both caffeine and acriflavine may be similar in the inhibition of single-strand deoxyribonucleic acid break formation, they differ in their mechanisms of action on postreplication repair.  相似文献   

15.
We have characterized 202 lacI mutations, and 158 dominant lacId mutations following treatment of Escherichia coli strains NR6112 and EE125 with 1-nitroso-6-nitropyrene (1,6-NONP), an activated metabolite of the carcinogen 1,6-dinitropyrene. In all, 91% of the induced point mutations occurred at G:C residues. The −(G:C) frameshifts were the dominant mutational class in the lacI collections of both NR6112 and EE125, and in the lacId collection of NR6112. Frameshift mutations occurred preferentially in runs of guanine residues, and their frequency increased with the length of the reiterated sequence. In strain EE125, which contained the plasmid pKM101, there was a marked stimulation in the frequency of base substitution mutations that was particularly apparent in the lacId collection. This study completes a comprehensive analysis of 1194 lacI and 348 lacId mutations induced by either 1,6-NONP or its positional isomer 1-nitroso-8-nitropyrene (1,8-NONP) in strains of E. coli that differ with regard to their ability to carry out nucleotide excision repair and/or their ability to express the translesion synthesis DNA polymerase RI (MucAB) encoded by plasmid pKM101. Among the mutations are 763 frameshift mutations, 367 base substitutions and 47 deletions; these mutations have been characterized at more than 300 distinct sites in the lacI gene. Our studies provide detailed insight into the DNA sequence alterations and mutational mechanisms associated with dinitropyrene mutagenesis. We review the mutational spectra, and discuss cellular lesion repair or tolerance mechanisms that modulate the observed mutational specificity.  相似文献   

16.
张维  李海燕  赖晓辉  杨允菲 《生态学杂志》2016,27(10):3105-3113
在天山峡谷野核桃分布的4条沟谷的阳坡和阴坡设置8个4000 m2样地,应用相邻格子法对野核桃每木调查,在不同尺度(面积)上采用方差/均值比率法和偏离指数(Cx)、负二项参数(K)、丛生指数(I)、平均拥挤度(m*)、聚块性指数(PAI)、聚集指数(Ca)等聚集强度指数对野核桃种群分布格局进行分析.结果表明: 随尺度增大,野核桃种群由集群分布向随机分布过渡;在25 m2尺度上,种群整体呈集群分布,但不同样地种群聚集强度存在较大差异,西沟阴坡种群聚集程度最大,南沟阴坡种群聚集程度最小;在50~400 m2尺度上,种群整体呈随机分布.在25 m2尺度上,幼树、小树和壮年树均呈集群分布,壮年树聚集强度最大,小树聚集强度最小;当取样尺度达到200~400 m2时,幼树、小树、壮年树和大树均呈随机分布.野核桃种群格局规模为25 m2,格局强度为2.49~9.38 m2;种群组分中小树格局强度最大,壮年树格局强度最小.取样尺度与种群斑块大小接近,采用适合的测定方法并应用多指数综合判定,一般可获得可靠的结论.  相似文献   

17.
Mutations induced by UVB (313-nm) radiation, a wavelength in the region of peak effectiveness for sunlight-induced skin cancer in humans, have been analyzed at the sequence level in simian cells by using a plasmid shuttle vector (pZ189). We find that significant differences exist between the types of mutations induced by this solar wavelength and those induced by nonsolar UVC (254-nm) radiation. Compared with 254-nm radiation, 313-nm radiation induces more deletions and insertions in the region sequenced. In addition, although the types of base substitutions induced by the two wavelengths are broadly similar (in both cases, the majority of changes occur at G-C base pairs and the G-C to A-T transition is predominant), an analysis of the distribution of these base changes within the supF gene following irradiation at 313 nm reveals additional hot spots for mutation not seen after irradiation at 254 nm. These hot spots are shown to arise predominantly at sites of mutations involving multiple base changes, a class of mutations which arises more frequently at the longer solar wavelength. Lastly, we observed that most of the sites at which mutational hot spots arise after both UVC and UVB irradiation of the shuttle vector are also sites at which mutations arise spontaneously. Thus, a common mechanism may be involved in determining the site specificity of mutations, in which the DNA structure may be a more important determinant than the positions of DNA photoproducts.  相似文献   

18.
《植物生态学报》2016,40(8):748
Aims Grazing intensity and grazing exclusion affect ecosystem carbon cycling by changing the plant community and soil micro-environment in grassland ecosystems. The aims of this study were: 1) to determine the effects of grazing intensity and grazing exclusion on litter decomposition in the temperate grasslands of Nei Mongol; 2) to compare the difference between above-ground and below-ground litter decomposition; 3) to identify the effects of precipitation on litter production and decomposition. Methods We measured litter production, quality, decomposition rates and soil nutrient contents during the growing season in 2011 and 2012 in four plots, i.e. light grazing, heavy grazing, light grazing exclusion and heavy grazing exclusion. Quadrate surveys and litter bags were used to measure litter production and decomposition rates. All data were analyzed with ANOVA and Pearson’s correlation procedures in SPSS. Important findings Litter production and decomposition rates differed greatly among four plots. During the two years of our study, above-ground litter production and decomposition in heavy-grazing plots were faster than those in light-grazing plots. In the dry year, below-ground litter production and decomposition in light-grazing plots were faster than those in heavy-grazing plots, which is opposite to the findings in the wet year. Short-term grazing exclusion could promote litter production, and the exclusion of light-grazing could increase litter decomposition and nutrient cycling. In contrast, heavy-grazing exclusion decreased litter decomposition. Thus, grazing exclusion is beneficial to the restoration of the light-grazing grasslands, and more human management measures are needed during the restoration of heavy-grazing grasslands. Precipitation increased litter production and decomposition, and below-ground litter was more vulnerable to the inter-annual change of precipitation than above-ground litter. Compared to the light-grazing grasslands, heavy-grazing grasslands had higher sensitivity to precipitation. The above-ground litter decomposition was strongly positively correlated with the litter N content (R2 = 0.489, p < 0.01) and strongly negatively correlated with the soil total N content (R2 = 0.450, p < 0.01), but it was not significantly correlated with C:N and lignin:N. Below-ground litter decomposition was negatively correlated with the litter C (R2 = 0.263, p < 0.01), C:N (R2 = 0.349, p < 0.01) and cellulose content (R2 = 0.460, p < 0.01). Our results will provide a theoretical basis for ecosystem restoration and the research of carbon cycling.  相似文献   

19.
The cytotoxic and mutagenic specificity of two therapeutically employed psoralens was examined in several Ames Salmonella typhimurium strains with near ultraviolet light (UVA, 320–400 nm) activation. Photomutagenic activity of 8-methoxypsoralen (8MOP) and 4,5′,8-trimethylpsoralen (TMP) was found to be sequence-specific, and additionally was dependent on the level of DNA-repair proficiency. Base-pair substitution photomutagenesis in hisG46 appeared to require plasmid pKM101-mediated “error-prone” repair. Frameshift photomutagenesis was observed in all hisC3076 strains but not in hisD3052 strains. Frameshift mutagenic activity in hisC3076 was enhanced in the absence of uvrB excision repair and increased further by plasmid pKM101. Phototoxicity was essentially identical in hisC3076, hisD3052 and hisG46 strains; uvrB excision-repair-deficient bacteria were considerably more susceptible to lethal effects than wild-type parental strains, while the presence of pKM101 had no apparent effect on survival. Finally, the data show that psoralens are potent frameshift photomutagens in Salmonella hisC3076 strains and demonstrate the potential utility of these strains in evaluating photomutagenic and phototoxic activity of new furocoumarin derivatives.  相似文献   

20.
放牧和围封通过影响植物群落结构和土壤微环境来调控草地生态系统的碳循环。该研究在内蒙古温带草原设置轻度放牧后围封、轻度放牧、重度放牧后围封、重度放牧4种样地, 通过测定干旱年(2011年)和湿润年(2012年)地上、地下凋落物产量、质量及其分解速率和土壤养分含量, 分析不同放牧强度对凋落物形成和分解的影响, 以及围栏封育对生态系统恢复的作用。结果表明: 重度放牧地上凋落物产量和分解速率均高于轻度放牧。干旱年轻度放牧样地地下凋落物产量和分解速率高于重度放牧, 湿润年相反。短期围封显著提高了凋落物产量, 轻度放牧样地围封后地上凋落物分解速率和养分循环加快, 而重度放牧样地围封后地上凋落物分解减慢。因此, 与重度放牧相比, 轻度放牧草地的恢复更适合采用围栏封育措施; 而重度放牧草地的恢复可能还需辅以必要的人工措施。降水显著促进地上、地下凋落物形成和分解。地下凋落物的生产和分解受降水年际波动影响较大, 重度放牧草地对降水变化的敏感度比轻度放牧草地高。地上凋落物分解速率与凋落物N含量显著正相关, 与土壤全N显著负相关, 与地上凋落物C:N和木质素:N相关性不大; 地下凋落物分解速率与凋落物C、C:N和纤维素含量显著负相关。该研究结果将为不同放牧强度的草地生态系统恢复和碳循环研究提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号