首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Protoplasts were isolated from sporophytes and from gametophyte cultures of several species in the order Laminariales. For each example, the isolation and culture procedures were investigated systematically, to identify conditions leading to plant regeneration. After dedifferentiation through a filamentous stage, protoplasts isolated from adultLaminaria saccharina sporophytes regenerated polystichous bladelets. In contrast, cells isolated fromLaminaria digitata sporophytes proved recalcitrant in culture, except when the donor plants were undifferentiated sporelings. The most critical factors for protoplast development were the origin of explants, the osmoticum used for cell isolation, cultivation in plain seawater, and the absence of stress during the first two weeks of culture. We also found that protoplast isolation from the sporophytes of members of the Laminariales results in the release of hydrogen peroxide, up to 5–120 μM final concentration in the macerating medium, a characteristic which may be related to protoplast recalcitrance. Protoplasts isolated from the gametophytic phase readily regenerated into normal gametophytes, capable of gametogenesis and producing sporophytes by fertilization.  相似文献   

2.
A simple suspension culture system of Platycerium bifurcatum was developed where sporophytes could be regenerated directly from leaf cells or indirectly through an aposporous gametophyte stage under the same culture conditions. Single cells and aggregates of up to 100 cells developed aposporous gametophytes which later gave rise to sporophytes. Such gametophytes started apogamy when they were mostly less than 0.7 mm in length, bearing only rhizoids. In most cases, only one sporophyte was regenerated from one gametophyte. Aggregates of 500–1000 or more cells, on the other hand, regenerated sporophytes directly. Intercellular interaction was considered to be the physiological cause, and the separation of leaf cells to a certain degree drove the cells to embark on different regeneration paths. It is suggested that the possible existence of a threshold size of cell aggregates separates the two regeneration patterns. Received: 3 March 1997 / Revision received: 11 April 1997 / Accepted: 3 June 1997  相似文献   

3.
Parthenogenetic sporophytes were obtained from three strains of Laminaria japonica Areschoug. These sporophytes grew to maturity in the sea, producine spores that all grew into female gametophytes. These female gametophytes gave rise to another generation of parthenogenetic sporophytes during the next year, so that by the year 1990 parthenogenetic sporophytes had been cultivated for 12, 9, and 7 generations, respectively, for the three strains. When female gametophytes from parthenogenetic sporophytes were combined with normal male gametophytes, normal sporophytes that reproduced and gave rise to both female and male gametophytes were obtained. The parthenogenetic sporophytes were shorter and narrower than the normal sporophytes of the same strain. Chromosome counts on mature sporophytes showed that normal sporophytes (from fertilized eggs) were diploid (2n = approximately 40) and that the spores they produced were haploid (n = approximately 20), while nuclei from both somatic and sporangial cells in parthenogenetic sporophytes were haploid. All gametophytes were haploid. Young sporophytes derived from cultures with both female and male gametophytes were diploid, while young, sporophytes obtained from female gametophytes from parthenogenetic sporophytes had haploid, diploid, or polyploidy chromosome numbers. Polyploidy was associated with abnormal cell shapes. The presence of haploid parthenogenetic sporophytes should be use in breeding kelp strains with useful characteristics, since the sporophyte phenotype is expressed from a haploid genotype which can be more readily selected.  相似文献   

4.
Murashige and Skoog's modified medium in 1% Difco Bacto-agar supplemented with sugar alcohols (sorbsitol, mannitol), growth regulators (1-naphthalenacetic acid, 2,4-dichlorophenoxyacetic acid, benzyladenine, kinetin) and sugars (fructose, glucose, sucrose) induced aposporous gametophytes from pinnae of Pteris vittata cultured in vitro at lower concentrations of all the mentioned components. Aposporous gametophytes and vegetative calli were produced at higher concentrations. The calli regenerated sporophytes when cultured on MS medium without growth regulators. The gametophytes grew vegetatively on MS medium but produced sporophytes when transferred into 0.1 strength MS medium. This is the first report of simultaneous production of calli and gametophytes from fern explants.  相似文献   

5.
《Aquatic Botany》2011,94(4):244-249
We explored the reproductive modes of Ulva intestinalis in the inner part of the Baltic Sea during three consecutive years by using five microsatellite loci to estimate the relative abundance of diploid sporophytes and haploid gametophytes. Our results suggest that both diploid sporophytes and haploid gametophytes occur regularly in the Baltic Sea. The ratio of haploid to diploid individuals changes with seasons. Sporophytes are more abundant than gametophytes throughout the year, but the proportion of haploids increases from 10% in early summer to 35% in September. The over-wintering takes primarily place as diploid spores released by sporophytes. The sporophytes appear to reproduce both sexually and asexually in the Baltic Sea, since clones were found for this life phase. The fraction of individuals which belonged to an apparent diploid clone was higher in spring (62%) than in autumn (33%). We also found evidence for asexual clones in haploid gametophytes. The presence of both diploid and haploid individuals and the pattern of genetic and genotypic diversity provide evidence of sexual reproduction in the Baltic Sea. Thus the sporophytes and gametophytes do not function as two reproductively separate units. Compared with many other algal species with a reduced reproductive cycle in low salinity, U. intestinalis differs by having a multitude of reproductive modes also in the brackish water Baltic Sea, which can in part explain the dynamic propagation and high adaptability of the species.  相似文献   

6.
A mutant stock of the fern Ceratopteris has been derived from an inbreeding study following an interspecific hybridization between two diploid species. The mutant is characterized by gametophytes that produce non-functional spermatozoids and are incapable of selfing. Sporophytes develop apogamously from the mutant gametophytes and, although they are initially haploid and sterile, portions of the fronds later become doubled somatically and behave like tissues of sexually derived homozygous sporophytes. The mutant segregates from sporophytes in a 1:1 ratio when crosses are made with wild type gametophytes. Certain aspects of the behavior are similar to those seen in some naturally occurring apomictic ferns.  相似文献   

7.
We explored the reproductive modes of Ulva intestinalis in the inner part of the Baltic Sea during three consecutive years by using five microsatellite loci to estimate the relative abundance of diploid sporophytes and haploid gametophytes. Our results suggest that both diploid sporophytes and haploid gametophytes occur regularly in the Baltic Sea. The ratio of haploid to diploid individuals changes with seasons. Sporophytes are more abundant than gametophytes throughout the year, but the proportion of haploids increases from 10% in early summer to 35% in September. The over-wintering takes primarily place as diploid spores released by sporophytes. The sporophytes appear to reproduce both sexually and asexually in the Baltic Sea, since clones were found for this life phase. The fraction of individuals which belonged to an apparent diploid clone was higher in spring (62%) than in autumn (33%). We also found evidence for asexual clones in haploid gametophytes. The presence of both diploid and haploid individuals and the pattern of genetic and genotypic diversity provide evidence of sexual reproduction in the Baltic Sea. Thus the sporophytes and gametophytes do not function as two reproductively separate units. Compared with many other algal species with a reduced reproductive cycle in low salinity, U. intestinalis differs by having a multitude of reproductive modes also in the brackish water Baltic Sea, which can in part explain the dynamic propagation and high adaptability of the species.  相似文献   

8.
This work showed for the first time the relationship between the effect of exogenous auxins and gibberellins on apogamy in Dryopteris affinis (Lowe) Fraser-Jenkins sp. affinis and its endogenous contents during early apogamic events. The addition of NAA (0.53 and 5.37 μM) or GA3 2.8 μM to an MS solid medium significantly increased apogamous sporophyte formation. BA induced brown callus that regenerated sporophytes in a hormone-free medium. The endogenous contents of GA1, GA3, GA4, GA7, GA9 and IAA were determined by GC–MS in gametophytes cultured on MS solid medium, before and during early stages of apogamous embryo development. The accumulation of both GA9 and IAA before embryo development was evident as high levels of GA4 in the earliest analysed stage of embryo development and high levels of GA3 in elongating shoots were found. The role of gibberellins on apogamy was also supported by data showing a decrease in the percentage of gametophytes developing embryos because of the addition of flurprimidol to the culture medium.  相似文献   

9.
谢斐  张朝晖 《植物研究》2011,31(1):117-120
通过对湘西茶田钒矿废弃冶炼厂矿渣上葫芦藓的野外生态调查和采集,利用原子吸收光谱仪、电感耦合等离子发射光谱仪和原子荧光光谱仪分析了葫芦藓配子体和孢子体及其基质重金属含量。结果表明葫芦藓配子体和孢子体富集了大量的重金属,各重金属元素在配子体和孢子体间的富集存在较大的差异,配子体比孢子体显著富集重金属元素(p<0.05),Zn和Mn在葫芦藓植物体中比其他重金属元素更高。同时也讨论了重金属在苔藓植物中的富集及生物阻抗的作用。  相似文献   

10.
The life history of the brown alga Chnoospora implexa J. Agardh (Chnoosporaceae, Scytosiphonales) from Japan was studied in laboratory cultures. This species showed a heteromorphic and diphasic life history, alternating between erect gametophytes and discoid sporophytes. The gametophytes were dioecious and produced isogametes. The zygotes developed into sporophytes at 20°C under long‐day conditions, which formed plurilocular zoidangia. Zoids released from the plurilocular zoidangia developed again into sporophytes that always formed plurilocular zoidangia at 20°C and 25°C in long‐day conditions, and mainly unilocular zoidangia at 25°C in short‐day conditions. Zoids released from unilocular zoidangia developed into dioecious gametophytes. At 15°C zygotic erect thalli were formed and were revealed to be diploid by microspectrofluorometric measurements of nuclear DNA contents. The development and reproduction of unfused gametes were similar to those of zygotes. Some strains showed a direct‐type life history; gametophytic thalli were produced, but not via a sporophytic phase.  相似文献   

11.
At an early stage of growth gametophytes support the sporophytes of ferns. Young sporophytes become independent of gametophytes when the first leaves develop. Although large fern gametophytes produce multiple archegonia simultaneously, only one sporophyte is typically established on one gametophyte. The number of sporophytes is believed to be controlled in two possible directions, from gametophyte to sporophyte or from preceding sporophyte to another sporophyte. To investigate the effects of gametophytes on their sporophytes, we studied the relationship between organic matter production by gametophytes and the growth of young sporophytes of Thelypteris palustris. We cut gametophytes in half (CGs) to reduce the gametophytes’ production of matter. There was no significant difference between the growth of sporophytes on intact gametophytes (IGs) and that on CGs. According to our estimates, based on the rate of organic matter production, the large gametophyte was able to produce two or more sporophytes. The resources required for CGs to make similar-sized sporophytes was twice that for IGs. In polyembryony each of the multiple sporophytes was similar in size to the single sporophytes. Resource limitation does not seem to explain why fern gametophytes establish single sporophytes.  相似文献   

12.
Osmunda regalis sporophytes form haploid spores which develop into functionally hermaphroditic gametophytes. The self-fertilization of such gametophytes results in zygotes which are completely homozygous. Spore samples collected from sporophytes in natural populations were used to establish gametophyte cultures. The majority of these gametophytes were unable to form viable embryos when only self-fertilization was possible. Controlled selfing and crossing experiments revealed that the inability of these homozygous embryos to develop normally is attributable to the presence of recessive lethals. To account for this genetic load, an hypothesis is proposed integrating the morphology and ecology of the gametophyte generation with the polyploid genetic system of the sporophyte generation.  相似文献   

13.
Sporophytes appeared on most gametophytes of Thelypteris palustris (Salisb.) Schott that reached a certain size, which is interpreted to be a critical size of gametophytes for the production of sporophytes. After sporophytes were produced, attached gametophytes ceased dry weight growth, but the gametophytes which did not produce sporophytes grew successively. It was hypothesized that matter produced by gametophytes was being supplied to young sporophytes. Photosynthesis and respiration of gametophytes with attached sporophytes were not significantly different from that of gametophytes without sporophytes. Photosynthetic activity of gametophytes dropped from 0.18 to 0.03 mol CO2 g–1 s–1 during the growth period. The higher photosynthetic rates of gametophytes in the early growth stage were important for reaching the critical size for sporophyte production in a short time. Sporophytes in the one leaf stage averaged 0.14 mol CO2 g–1 s–1 of photosynthetic activity. The results show that sporophytes that had expanded the first leaf grow by their own photosynthetic production. Gametophytes allocated the photosynthate for sporophytes and it was an important aid before the one-leaf stage. The supportive role of gametophytes ended at that stage.  相似文献   

14.
Yamagishi T  Hishinuma T  Kataoka H 《Planta》2004,219(2):253-260
Protoplasts of the marine coenocytic macrophyte Bryopsis plumosa (Hudson) C. Agardh. [Caulerpales] can easily be obtained by cutting gametophytes or sporophytes with sharp scissors. When a protoplast isolated from a gametophyte was fused with a protoplast isolated from a sporophyte of this alga, it germinated and developed into either one of two completely different forms. One plant form, named Type G, appeared quite similar to a gametophyte, and the other, named Type S, looked similar to a sporophyte. While the Type G plant contained many small nuclei of gametophyte origin together with a single giant nucleus of sporophyte origin, the Type S plant contained many large nuclei of uniform size. These large nuclei in the Type S plant had metamorphosed from the gametophytic nuclei, and were not formed through division of the giant nucleus of sporophyte origin. Fragments of the Type S plant, each having such a large nucleus, developed into creeping filaments that look very similar to sporophytes. While cell walls of gametophytes and Type G plants were stained by Congo-red, those of the thalli of regenerated Type S plants and sporophytes were not stained by the dye. This indicated that the large nuclei of the Type S plant did not express genes for xylan synthesis, which are characteristic of gametophytes. Two-dimensional gel electrophoretic analysis revealed that most of the proteins synthesized in the Type S plant were identical to those of sporophytes. These results strongly suggest that in the Type S plant, the gametophytic nuclei are transformed into sporophyte-like nuclei by an unknown factor(s) produced by the giant nucleus of sporophyte origin and that the transformed nuclei express the set of genes characteristic of sporophytes. Despite morphological similarity, however, the regenerated Type S plant could not produce zoospores, because its large nuclei did not divide normally. The transformed large nuclei of gametophyte origin still seemed to be in the haploid state.Abbreviations DAPI 4,6-Diamidino-2-phenylindole - DIC Differential interference contrast - IEF Isoelectric focusing - PES Provasolis enriched seawater  相似文献   

15.
Protoplasts were isolated from subcultured gametophytes of Equisetumarvense by treatment with Driselase and then cultured in vitro.Addition of activated charcoal (AC) to the culture medium enhancedthe rate of cell division, as well as the survival of both protoplastsand regenerated protoplasts. However, subsequent division ofcells was not observed after one or two cycles of replicationin cultures supplemented with AC. When regenerated protoplastswere transferred to fresh medium without AC 3 to 5 weeks afterthe first plating, the transferred cells formed rhizoids anddeveloped into small, young gametophytes without the prior formationof cell clusters or calluses. Furthermore, sprophytic shootsdifferentiated from the protoplast-derived gametophytes whenthey were cultured on medium supplemented with 6-benzylaminopurine(BA). (Received April 5, 1990; Accepted July 30, 1990)  相似文献   

16.
The conditions for culture of viable protoplasts from Laminaria japonica were investigated and the regenerative processes were observed in detail. As a result of culturing at four water temperatures (5, 10, 15, and 18°C), we found that low water temperature was better for survival, division and rhizoidal formation of protoplast‐derived cells. Only epidermis‐derived protoplasts developed into normal sporophytes through a direct developmental process. Protoplast‐derived cells divided after 5 days and 2–10 celled germlings formed the first rhizoids after 15 days. Only initial sporophytes with the first rhizoids grew to normal sporophytes with multilayered blades, stipes and holdfasts. When these young sporophytes were transplanted into the sea, they grew to normal fertile sporophytes.  相似文献   

17.
18.
Developmental pathways from isolated protoplasts were investigated with the moss Funaria hygrometrica, the liverwort Anthoceros crispulus, and the fern Anogramma leptophylla. Gametophytic protoplasts regenerated gametophytes. Apospory was obtained with sporophytic protoplasts of the moss and the fern. The archegoniates also grew in interdivisional co-cultures with solanaceous species.  相似文献   

19.
Protoplasts were isolated enzymatically from prothallia ofLygodium japonicum. The protoplasts grown in a culture medium containing 0.6 M mannitol and 0.05 M sucrose began to divide within 8 days of culture, and after 30 days 10-cell clusters were present. When the cell-clusters were transferred into fresh media followed by sequential reduction of mannitol concentration, they developed rhizoids and protonemata. The reduction of mannitol concentration to 0.3 M resulted in the regeneration of a common gametophyte within 50 days of culture, and subsequently the regenerated gametophytes produced sporophytic leaves and roots.  相似文献   

20.
BACKGROUND AND AIMS: Active growth in post-embryonic sporophytes of desert mosses is restricted to the cooler, wetter months. However, most desert mosses have perennial gametophytes. It is hypothesized that these life history patterns are due, in part, to a reduced desiccation tolerance for sporophytes relative to gametophytes. METHODS: Gametophytes with attached post-embryonic sporophytes of Tortula inermis (early seta elongation phenophase) were exposed to two levels of desiccation stress, one rapid-dry cycle and two rapid-dry cycles, then moistened and allowed to recover, resume development, and/or regenerate for 35 d in a growth chamber. KEY RESULTS: Gametophytes tolerated the desiccation treatments well, with 93 % survival through regenerated shoot buds and/or protonemata. At the high stress treatment, a significantly higher frequency of burned leaves and browned shoots occurred. Sporophytes were far more sensitive to desiccation stress, with only 23 % surviving after the low desiccation stress treatment, and 3 % surviving after the high desiccation stress treatment. While the timing of protonemal production and sporophytic phenophases was relatively unaffected by desiccation stress, shoots exposed to one rapid-dry cycle produced shoots more rapidly than shoots exposed to two rapid-dry cycles. CONCLUSIONS: It is concluded that sporophytes of Tortula inermis are more sensitive to rapid drying than are maternal gametophytes, and that sporophyte abortion in response to desiccation results from either reduced desiccation tolerance of sporophytes relative to gametophytes, or from a termination of the sporophyte on the part of the gametophyte in response to stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号