共查询到20条相似文献,搜索用时 15 毫秒
1.
We performed a common garden experiment using parental, F1, F2, and backcross willow hybrids to test the hypothesis that hybrid willows experience breakdown of resistance to herbivores. After exposing plants to herbivores in the field, we measured the densities/damage caused by 13 insect herbivores and one herbivorous mite. Using joint-scaling tests, we determined the contribution of additive, dominance, and epistasis to variation in susceptibility to herbivores (measured either as density or damage level) among the six genetic classes. We found the genetic architecture of susceptibility/resistance in the parental species to be complex, involving additive, dominance, and epistasis for each herbivore species. Although genic interactions altered plant susceptibility for each of the 14 herbivores, three distinct patterns of response of herbivores to hybrids were expressed. One pattern, observed in four herbivore species, supported the hypothesis of breakdown of resistance genes in recombinant hybrids. A second pattern, shown by six other herbivore species, supported the hypothesis of hybrid breakdown of host recognition genes. In other words, epistatic interactions for host recognition traits (probably oviposition/feeding stimulants or attractants) appeared to be important in determining herbivore abundance for those six species. The final patterns supported a structure of dominance, either for host recognition traits (in the case of three herbivore species) or for host resistance traits (for one herbivore species). The combination of differing responses of herbivore species, including members of the same genus and tribe, and the ubiquitous importance of epistasis suggests that many genes affect herbivore resistance in this hybrid willow system. 相似文献
2.
Here, the growth-differentiation balance hypothesis (GDBH) was tested by quantifying temporal variation in the relative growth rate (RGR), net assimilation rate (NAR), and phenylpropanoid concentrations of two willow species (Salix sericea and Salix eriocephala) across five fertility levels. Initially, RGR increased and total phenylpropanoids declined (although every individual phenolic did not) as fertility increased, but NAR was unaffected. Subsequently, NAR and phenylpropanoids declined in the low fertility treatment, generating a quadratic response of secondary metabolism across the nutrient gradient. As above- and below-ground growth rates equilibrated, NAR and phenylpropanoids increased in the low fertility treatment, re-establishing a negative linear effect of fertility on secondary metabolism. A transient quadratic response of secondary metabolism is predicted when GDBH is integrated with models of optimal phenotypic plasticity, occurring when low NAR imposes carbon constraints on secondary metabolism in low nutrient environments. Once plants acclimate to nutrient limitation, the equilibrium allocation state is predicted to be a negative correlation between growth and secondary metabolism. Although both willow species generally responded according to GDBH, the complexity observed suggests that prediction of the effects of nutrient availability on secondary metabolism (and other plastic responses) in specific cases requires a priori knowledge of the physiological status of the plant and soil nutrient availability. 相似文献
3.
4.
5.
Camila Pérez Roig Ezequiel González Martin Videla 《Agricultural and Forest Entomology》2023,25(3):404-415
- In peri-urban areas, many farmers are transitioning from conventional agriculture to agroecological practices to reduce pesticide input and preserving ecosystem services such as natural pest control. Field margins represent a stable habitat for arthropods, but community structure depends on many factors, including management type and vegetation features.
- We studied the effects of agroecological transitions and vegetation features on arthropods of horticultural field margins, focusing on three feeding guilds (herbivores, predators and parasitoids). We sampled arthropods using the beat-sheet method in five conventional fields and five under agroecological transition. We also measured vegetation height, richness, flower abundance and plant cover.
- Our results showed that arthropod diversity was higher in agroecological fields whereas herbivore abundance was lower, with a consistent pattern across most taxonomic orders. Vegetation features displayed multiple effects among functional and taxonomic groups. Herbivores did not respond to most vegetation variables whereas predators correlated with several, with similar trends among orders.
- We conclude that agroecological transitions and field margins with high vegetation richness and floral resources influence arthropod communities with potential benefits regarding pest regulation. These practices might be more effective if considered alongside other methods that enhance biodiversity and if they are consistent at a landscape scale.
6.
We conducted an experimental study of the effects of nutrient addition on the susceptibility of two species of willows (Salix
eriocephala and S. sericea) and their hybrid to a pathogen and several herbivores. We hypothesized that the relative susceptibility of parental and
hybrid willows would depend upon soil nutrient availability and vary among plant enemies. Using potted plants in a common
garden, we found that S. eriocephala was significantly more susceptible to attack by a fungal rust (Melampsora sp.), a leaf-chewing beetle (Popillia
japonica), and a leaf-folding sawfly (Phyllocolpa
nigrita) than was S. sericea. Conversely, S. sericea was significantly more susceptible to attack by a spider mite (Tetranychus sp.) and a leaf-mining caterpillar (Phyllocnistis sp.) than was S. eriocephala. Hybrid susceptibility to Melampsora sp. and to Phyllocnistis sp. resembled S. eriocephala’s, while hybrid susceptibility to Phyllocolpa
nigrita, Tetranychus sp., and Popillia
japonica resembled S. sericea’s. Susceptibility to a sixth enemy, another leaf-mining caterpillar, Phyllonorycter
salicifoliella, did not differ among the parents and hybrid. Susceptibility to herbivores and pathogens increased along a gradient of increasing
fertilizer application, and this effect was independent of plant taxon or enemy. The results of our study point to the contrasting
influences of a taxonomically and functionally diverse enemy community, reinforce the hybrid dominance model of enemy susceptibility,
and demonstrate that physiological stress and enemy susceptibility can be inversely related.
Received: 25 March 1996 / Accepted: 6 August 1996 相似文献
7.
Boniface O. Oindo Andrew K. Skidmore Herbert H.T. Prins 《Biodiversity and Conservation》2001,10(11):1923-1931
It is evident to any biologist that small-bodied species within a given higher taxon (order, class, phylum, etc.) tend to be represented by more individuals. Hence small-bodied species are generally more abundant than large-bodied species. We analyzed large herbivore species data collected in Kenyan rangelands. An index of biological diversity derived from the negative relation between animal species body size and its local abundance is proposed. We compared the new index with species abundances at landscape scale (10 × 10 km) in individual districts, as well as in the combined regional data. The results show a consistently strong positive relation between the new diversity index and species abundances. The proposed diversity index has the advantage of incorporating information on species abundances without the need for time-consuming surveys. 相似文献
8.
真菌次生代谢产物多样性及其潜在应用价值 总被引:50,自引:2,他引:50
从生物间的协同进化和微生物次生代谢产物的功能意义原理出发,本文侧重介绍了与植物和昆虫密切相关的一些真菌及其次生代谢产物在医药和农用新药物开发应用中的潜在价值。 相似文献
9.
David W. Thieltges Christian Hof Martin Brändle Roland Brandl Robert Poulin 《Global Ecology and Biogeography》2011,20(5):675-682
Aim We investigated the relationship between host and parasite diversity as well as latitudinal gradients in parasite diversity on a continental scale in European freshwater trematodes. Location European freshwaters. Methods We extracted distributional data for 564 freshwater trematodes across 25 biogeographical regions in Europe from the Limnofauna Europaea and used multiple regression analyses to test for correlations between the diversity of definitive (vertebrates) or first intermediate (gastropods) hosts and that of trematodes, and for latitudinal gradients in trematode diversity. In particular, we investigated patterns in beta diversity among latitudinal bands and between trematode species that parasitize host groups with low (autogenic) and high (allogenic) dispersal capacity. We also tested for a latitudinal gradient in the proportional representation of these two trematode groups within regional faunas. Results Latitude or first intermediate host richness had no effect on trematode richness, but definitive host richness was a strong predictor of trematode richness, among both allogenic and autogenic parasites. We found that beta diversity of trematode faunas within latitudinal bands decreased to the north, with similar values for allogenic and autogenic trematodes. Finally, we observed an increasing proportion of autogenic species toward the north of Europe. Main conclusions The richness of definitive hosts appears to be the driver of trematode diversity at a continental scale. The latitudinal gradient in beta diversity reflects patterns observed in free‐living species and probably results from recolonization in the aftermath of the ice ages. The similar beta‐diversity patterns of allogenic and autogenic trematodes and the increasing proportion of autogenic trematodes with increasing latitude are surprising. We suggest that the geographical scale of our analysis or confounding factors such as differences in habitat utilization and specialization may partly explain these patterns. 相似文献
10.
Foliar endophytic fungi (FEF) are diverse and ubiquitously associated with photosynthetic land plants. However, processes shaping FEF assemblages remain poorly understood. Previous studies have indicated that host identity and host habitat are contributing factors, but these factors are often difficult to disentangle. In this study, we studied FEF assemblages from plants grown in a botanical garden, enabling us to minimize the variation in abiotic environmental conditions and fungal dispersal capacity. FEF assemblages from 46 Ficus species were sequenced using next‐generation methods, and the results indicated that closely related host species had clearly differentiated FEF assemblages. Furthermore, host phylogenetic proximity was significantly correlated with the similarity of their FEF assemblages. In the canonical correspondence analysis, eleven leaf traits explained 32.9% of the total variation in FEF assemblages, whereas six traits (specific leaf area, leaf N content, leaf pH, toughness, latex alkaloid content, and latex volume per leaf area) were significant in the first two dimensions of ordination space. In the multiple regression on distance matrix analysis, 21.0% of the total variance in FEF assemblage was explained by both host phylogeny and leaf traits while phylogeny alone explained 7.9% of the variance. Thus, our findings suggest that both evolutionary and ecological processes are involved in shaping FEF assemblages. 相似文献
11.
We explored differences in leaf nutrient contents between species from Mediterranean shrublands with the ability to resprout after disturbances such as fire (resprouters) and others without this capacity (non-resprouters). Since it is to be expected that resprouting capacity is related to a more conservative use of nutrients, we hypothesize that resprouter and non-resprouter species will differ in their leaf nutrient concentrations.We measured the following leaf traits: leaf carbon content (LCC), leaf nitrogen content, leaf phosphorous content (LPC), leaf potassium content, leaf calcium content (LCaC), leaf magnesium content and leaf sodium content, in 30 woody species coexisting in a coastal shrubland. We also considered the influence of species’ taxonomic affiliation in our analysis.Non-resprouters had higher LPC and LCaC than resprouter species, and lower LCC, which could be related to their cell and life-history properties. This study also suggests that non-resprouter species have more P in their leaves and are less limited by P than resprouter species.Overall, the differences in leaf nutrient contents suggest that shifts in the proportion of resprouter and non-resprouter species resulting from changes in the fire regime may have effects on the functional properties of the ecosystem. 相似文献
12.
The Enemy Release Hypothesis links exotic plant success to escape from enemies such as herbivores and pathogens. Recent work
has shown that exotic plants that more fully escape herbivores and pathogens are more likely to become highly invasive, compared
to plants with higher enemy loads in their novel ranges. We predicted that highly invasive plants from the Asteraceae and
the Brassicaceae would be less acceptable, in laboratory no-choice feeding trials, to the generalist herbivore the American
grasshopper, Schistocerca americana. We also compared herbivory on invasive and non-invasive plants from the genus Centaurea in no-choice feeding trials using the red-legged grasshopper Melanoplus femurrubrum and in a common garden in the field. In accordance with our predictions, highly invasive plants were fed on less by grasshoppers
in the laboratory. They also received less damage in the field, suggesting that they contain feeding deterrents that render
them less acceptable to generalist herbivores than non-invasive plants. 相似文献
13.
Plastome phylogeny and lineage diversification of Salicaceae with focus on poplars and willows 下载免费PDF全文
Phylogenetic relationships and lineage diversification of the family Salicaceae sensu lato (s.l.) remain poorly understood. In this study, we examined phylogenetic relationships between 42 species from six genera based on the complete plastomes. Phylogenetic analyses of 77 protein coding genes of the plastomes produced good resolution of the interrelationships among most sampled species and the recovered clades. Of the sampled genera from the family, Flacourtia was identified as the most basal and the successive clades comprised both Itoa and Poliothyrsis, Idesia, two genera of the Salicaceae sensu stricto (s.s.) (Populus and Salix). Five major subclades were recovered within the Populus clade. These subclades and their interrelationships are largely inconsistent with morphological classifications and molecular phylogeny based on nuclear internal transcribed spacer sequence variations. Two major subclades were identified for the Salix clade. Molecular dating suggested that species diversification of the major subclades in the Populus and Salix clades occurred mainly within the recent Pliocene. In addition, we found that the rpl32 gene was lost and the rps7 gene evolved into a pseudogene multiple times in the sampled genera of the Salicaceae s.l. Compared with previous studies, our results provide a well‐resolved phylogeny from the perspective of the plastomes. 相似文献
14.
Host plant density and patch isolation drive occupancy and abundance at a butterfly's northern range margin 下载免费PDF全文
Marginal populations are usually small, fragmented, and vulnerable to extinction, which makes them particularly interesting from a conservation point of view. They are also the starting point of range shifts that result from climate change, through a process involving colonization of newly suitable sites at the cool margin of species distributions. Hence, understanding the processes that drive demography and distribution at high‐latitude populations is essential to forecast the response of species to global changes. We investigated the relative importance of solar irradiance (as a proxy for microclimate), habitat quality, and connectivity on occupancy, abundance, and population stability at the northern range margin of the Oberthür's grizzled skipper butterfly Pyrgus armoricanus. For this purpose, butterfly abundance was surveyed in a habitat network consisting of 50 habitat patches over 12 years. We found that occupancy and abundance (average and variability) were mostly influenced by the density of host plants and the spatial isolation of patches, while solar irradiance and grazing frequency had only an effect on patch occupancy. Knowing that the distribution of host plants extends further north, we hypothesize that the actual variable limiting the northern distribution of P. armoricanus might be its dispersal capacity that prevents it from reaching more northern habitat patches. The persistence of this metapopulation in the face of global changes will thus be fundamentally linked to the maintenance of an efficient network of habitats. 相似文献
15.
《Fungal Ecology》2015
Eudarluca caricis is a common hyperparasite of rusts. A total of 100 cultures were isolated from six Puccinia species or forms growing on 10 species of British grasses at two sites approximately 3 km apart. 82 isolates collected in 2005 were partially sequenced at the ITS locus, and amplified fragment length polymorphism profiles generated for 86 isolates from 2005 and 12 from 2007. Partial ITS sequences of most isolates grouped closely, in a clade with previously reported graminaceous Puccinia isolates and a number of Melampsora isolates. A second clade was very distinct and contained mostly isolates from Puccinia poarum on Poa trivialis. All isolates had distinct AFLP haplotypes. The P. poarum isolates were very distinct from isolates collected from other rusts at the same site. Isolates from P. brachypodii f. sp. arrhenatheri growing on Arrhenatherum elatius in 2005 and 2007 at the same location were distinct (P < 0.001). Isolates from each rust or grass in one year and site were more similar than expected from overall variation between isolates (P < 0.001). Isolates from P. coronata on different grasses clustered together (with isolates from P. brachypodii f. sp. poae-nemoralis), suggesting partial host rust specialisation in E. caricis. 相似文献
16.
The ability of palaeontologists to correctly diagnose and classify new fossil species from incomplete morphological data is fundamental to our understanding of evolution. Different parts of the vertebrate skeleton have different likelihoods of fossil preservation and varying amounts of taxonomic information, which could bias our interpretations of fossil material. Substantial previous research has focused on the diversity and macroevolution of non-avian theropod dinosaurs. Theropods provide a rich dataset for analysis of the interactions between taxonomic diagnosability and fossil preservation. We use specimen data and formal taxonomic diagnoses to create a new metric, the Likelihood of Diagnosis, which quantifies the diagnostic likelihood of fossil species in relation to bone preservation potential. We use this to assess whether a taxonomic identification bias impacts the non-avian theropod fossil record. We find that the patterns of differential species abundance and clade diversity are not a consequence of their relative diagnosability. Although there are other factors that bias the theropod fossil record that are not investigated here, our results suggest that patterns of relative abundance and diversity for theropods might be more representative of Mesozoic ecology than often considered. 相似文献
17.
18.
Rhys Owen Gardner 《Biochemical Systematics and Ecology》1977,5(1):29-35
The systematic distribution of the secondary metabolities of angiosperms has been shaped by the role of these substances as plant defence in the continual chemical werfare between plants and their pests and predators. In the Rosidae-Asteridae, these coevolutionary interactions have caused the gradual replacement of a defence based on tannin and crystals (primitive Rosidae) by defences based on a variety of toxic and repellent substances (advanced Asteridae). Coevolutionary considerations support the concept that within related taxa, biosynthetic sequences of secondary metabolites can correspond directly with chemotaxonomic advancement. 相似文献
19.
Caterpillar assemblages on Chusquea bamboos in southern Ecuador: abundance,guild structure,and the influence of host plant quality 下载免费PDF全文
CARLO L. SEIFERT LISAMARIE LEHNER FLORIAN BODNER KONRAD FIEDLER 《Ecological Entomology》2016,41(6):698-706
1. Information on the guild structure of foliage‐associated tropical insects is scarce, especially as caterpillars are mostly considered only as herbivores feeding on living leaves. However, many caterpillar species display alternative trophic associations, feeding on dead or withered leaves or epiphylls (‘non‐herbivores’). 2. To determine the contribution of these non‐herbivores, caterpillar communities associated with Chusquea Kunth (Poaceae) in the Andes of southern Ecuador were investigated. Caterpillars were collected at two elevation levels (montane rainforest ~2000 m and elfin forest at ~3000 m a.s.l.) and assigned to three feeding guilds (strict herbivores, non‐herbivores, and switchers) based on feeding trials. Foliage quality and leaf area were recorded to test for their influence on guild composition and caterpillar density. 3. Three hundred and eighty‐nine individuals belonging to 175 Lepidoptera species associated with Chusquea bamboos were found. The species richness of caterpillars was similarly high at both elevation levels but varied between feeding guilds. Approximately half (46.5%) displayed an alternative feeding association, i.e. were non‐herbivores (31.1%) or switchers (15.4%). 4. Caterpillar density was nearly two‐fold higher in the elfin forest, but only strict herbivores and switchers increased significantly with elevation. Leaf area positively influenced the density of strict herbivores and switchers; foliage quality only affected strict herbivores. The density of non‐herbivores did not differ significantly between the forest types and was not related to leaf area or foliage quality. 5. The present study underpins that non‐herbivores make up a considerable fraction of caterpillar communities in tropical mountain ecosystems and demonstrates that elevation, foliage quality and available plant biomass further shape feeding guild composition. 相似文献
20.
Trevor G. Jones Kyaw Min Tun Maria Minor Andrea Clavijo McCormick 《Agricultural and Forest Entomology》2021,23(4):420-428
- The giant willow aphid (Tuberolachnus salignus) is an invasive pest that can attain large populations on willows (Salix spp.). This has the potential to have a negative impact on the extensive use of willows for soil conservation, and as a source of pollen and nectar for honey bees in New Zealand.
- A willow nursery field trial was established to evaluate the aphid populations, and the survival and growth of young plants of several willow species and hybrids, during two growing seasons from planting.
- The willow species and hybrids varied widely in their susceptibility to the aphid, with large aphid populations and plant mortality in the most susceptible willows, and reductions in plant growth in all but aphid-resistant willows. The effects on the plants were not seen in the first season, but occurred during the second season.
- The aphid can be expected to have some negative impacts in New Zealand, with reductions in growth of some willows commonly used for soil conservation, and for pollen and nectar for honey bees.